-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplt_locations.py
116 lines (106 loc) · 4.54 KB
/
plt_locations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Attention: This does not work with the GISS model yet!
# Fully working '12month climatology' of all polynyas
import pickle
import cmocean
import utils
from matplotlib import pyplot as plt
import cartopy
import cartopy.crs as ccrs
import numpy
monthDict={1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May',
6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct',
11:'Nov', 12:'Dec'}
tsDict={'monthly':{1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7,
8:8, 9:9, 10:10, 11:11, 12:12},
'daily':{1:15, 2:45, 3:75, 4:105, 5:135, 6:165,
7:195, 8:225, 9:255, 10:285, 11:315, 12:345}}
freq_dict = {'daily':'day', 'monthly':'mon'}
plt.rcParams.update({'font.size': 25})
variable = 'siconc'
freq = 'daily'
threshold = '30'
scenario = 'historical'
if freq=='daily':
divider = 30
else:
divider = 1
resultsdictionary = utils.create_resultsdictionary()
models = list(resultsdictionary[variable][freq_dict[freq]]['30'].keys())
models.sort()
models.remove('OBS')
#breakpoint()
if variable == 'sithick':
models.remove('CESM2-WACCM'); models.remove('CESM2-WACCM-FV2'); models.remove('MPI-ESM1-2-LR')
models.remove('BCC-ESM1'); models.remove('MPI-ESM-1-2-HAM')
print('plotting for %s models'%len(models))
fig = plt.figure(figsize=[25,25])
fig.subplots_adjust(wspace=0.1, hspace=0.1)
#print(source_id)
print('List of models:', models)
for index, source_id in enumerate(models):
print(source_id)
if source_id in ['GISS-E2-1-H', 'OBS']:#, 'OBS']:
continue
dataset_areacello = utils.open_CMIP_variable(
model=source_id, variable='areacello', scenario='historical', freq='daily')
dataset_areacello = utils.homogenize_CMIP_variable(dataset_areacello)
for i in range(9,10):
timestep = i#tsDict[freq][i]
sa_tot_file = open('../sa_tot_alltime/sa_tot_alltime_%s_%s_%s_%s_%s_%s'%(
freq, scenario,threshold,source_id,variable,timestep), "rb" )
pa_tot_file = open('../sa_tot_alltime/pa_tot_alltime_%s_%s_%s_%s_%s_%s'%(
freq, scenario,threshold,source_id, variable, timestep), "rb" )
print('using file ../sa_tot_alltime/sa_tot_alltime_%s_%s_%s_%s_%s_%s'%(
freq, scenario,threshold,source_id,variable,timestep))
#../sa_tot_alltime/sa_tot_alltime_daily_historical_60_SAM0-UNICON_siconc_97
# the divided by 30 I have to do here because it is not implemented correctly in the algorithm yet
if source_id in ['ACCESS-CM2', 'MRI-ESM2-0']: #thos are the two that might not have to be divided!
sa_tot_alltime = pickle.load(sa_tot_file)
pa_tot_alltime = pickle.load(pa_tot_file)
else:
sa_tot_alltime = pickle.load(sa_tot_file)/divider
pa_tot_alltime = pickle.load(pa_tot_file)/divider
sa_tot_file.close()
pa_tot_file.close()
print('index:', index, "source_id:", source_id)
ax = plt.subplot(5,5,index+1,projection=ccrs.Orthographic(central_latitude=-90))
ax.set_extent([-180, 180, -90, -50], ccrs.PlateCarree())
ax.background_patch.set_facecolor('grey')
cmap=utils.colormap_alpha(cmocean.cm.ice)#plt.cm.Greys_r)
colors1 = plt.pcolormesh(
dataset_areacello.lon,
dataset_areacello.lat,
sa_tot_alltime,
transform=ccrs.PlateCarree(),
cmap=cmap,
vmin=0,
vmax=100)
cmap = utils.colormap_alpha(plt.cm.get_cmap('autumn', 21))
colors2 = plt.pcolormesh(
dataset_areacello.lon,
dataset_areacello.lat,
pa_tot_alltime,
transform=ccrs.PlateCarree(),
cmap=cmap,
vmin=0,
vmax=20)#20
ax.set_title(source_id, fontsize=25)
ax.coastlines()
ax.add_feature(cartopy.feature.LAND, edgecolor='k')
ax.gridlines()
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.87, 0.15, 0.025, 0.7])
cbar_ax2 = fig.add_axes([0.90, 0.15, 0.025, 0.7])
cbar1 = fig.colorbar(colors1, cax=cbar_ax)
cbar2 = fig.colorbar(colors2, cax=cbar_ax2, extend='max')
#if variable == 'siconc':
cbar1.set_label('% probability of sea ice coverage > threshold',labelpad=-110)
#elif variable == 'sivol':
# cbar1.set_label('mean sea ice thickness', labelpad=-110)
#elif variable == 'sithick':
# cbar1.set_label('')
cbar2.set_label('% propability of polynya occurence',labelpad=0)
cbar_ax.yaxis.set_ticks_position('left')
plt.savefig('./plt_locations/%s_%s_%s_%s.png'%(variable, threshold, freq, monthDict[i]))#, dpi=300)
# plt.show()
#open('./sa_tot_alltime/sa_tot_alltime/')