-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcatdef.tex
67 lines (60 loc) · 2.36 KB
/
catdef.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
%% A tentative, eye-catchy, one-page definition of category (I would like to replicate the page frome my handwritten notes.
\documentclass[preview]{standalone}
\usepackage{amsmath}
\usepackage{verbatim}
\usepackage[italian,english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[basic,cat]{./Math-Symbols-List/toninus-math-symbols}
\usepackage{./Latex-Theorem/theoremtemplate}
\usepackage{./visualcat}
\begin{document}
\begin{definition}[Category ]
Category is a tuple $($data,structure,axioms$)$.
\begin{itemize}
\item \emph{data}
\begin{displaymath}
\cat \leadsto
\begin{cases}
\Obj(\cat) :
\text{\parbox{0.65\textwidth}{ collection of items called \emph{objects of $\cat$}}}
\\
\biggr\lbrace \hom_{\cat} (A,B) \biggr\rbrace_{A,B \in \Obj(\cat)} :
\text{\parbox{0.45\textwidth}{parametrized family of collections of items called \emph{morphisms} or \emph{arrows}}}
\end{cases}
\end{displaymath}
\item Structure:
(Composition of arrows)
\begin{displaymath}
\circ : \hom_{\cat}(A,B) \times \hom_{\cat}(B,C) \rightarrow \hom_{\cat} (A,C)
\end{displaymath}
Diagrammatically \footnote{This is more properly a diagrammatic definition of $\commute$}:
$\forall \bulk \textcolor{red}{\exists \bulk} \textcolor{blue}{\St \commute}$\\
\begin{tikzcd}
A \arrow[d, "f"] \arrow[dd, bend left=60,red, "gf\textcolor{blue}{ = f \circ g}"] & \\
B \arrow[d, "g"] \arrow[r, phantom,"\commute",, very near start,blue] & \phantom.\\
C &
\end{tikzcd}
\item Axioms:
\begin{itemize}
\item \emph{Identity axiom}:
$\forall \bulk \textcolor{red}{\exists \bulk} \textcolor{blue}{\St \commute}$\\
\begin{tikzcd}
A \arrow[rr, "\id_A",red] \arrow[rrdd, "f", bend right]& & A \arrow[dd, "f"] \arrow[rrdd, "f", bend left] & & \\
& |[blue]|\commute & & |[blue]|\commute & \\
& & B \arrow[rr, "\id_B",red] & & B
\end{tikzcd}
\item \emph{associativity axiom}
$\forall \bulk \textcolor{green}{h (gf) = (hg) f}$ \\
\begin{tikzcd}
A \arrow[r,"f"] \arrow[rr,"gf",bend left=40, blue] \arrow[rrr,"h(gf)",bend left=80, green] \arrow[rrr,"(hg)f",bend right=80, green] &
B \arrow[r,"g"] \arrow[rr,"hg",bend right=40, blue] &
C \arrow[r,"h"] &
D
\end{tikzcd}
\end{itemize}
\end{itemize}
\end{definition}
\begin{notation}
$\Arr(\cat) = \bigcup\limits_{A,B \in \Obj(\cat)}\hom_{\cat} (A,B) $
\end{notation}
\end{document}