-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctorclassification_2.tex
63 lines (54 loc) · 2.24 KB
/
functorclassification_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
%% A tentative, eye-catchy, one-page definition of category (I would like to replicate the page from my handwritten notes.)
\documentclass[preview]{standalone}
\usepackage{amsmath}
\usepackage{verbatim}
\usepackage[italian,english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[basic,cat]{./Math-Symbols-List/toninus-math-symbols}
\usepackage{./Latex-Theorem/theoremtemplate}
\usepackage{./visualcat}
\begin{document}
\begin{definition}[Essentially Surjective Functor]
\parbox{0.35\textwidth}{
$$\forall Y\in \cat[D] \textcolor{blue}{\exists \bulk}$$
}
\begin{tikzcd}
\color{blue} X & & Y \\
& & \color{blue} F(X) \arrow[u,"\simeq",blue, leftrightarrow]
\end{tikzcd}
\end{definition}
%
\begin{definition}[Iso Functor]
\parbox{0.35\textwidth}{
$$\textrm{functor} \bulk : \textcolor{red}{\exists \bulk} \textcolor{blue}{\St \bulk}$$
}
\begin{tikzcd}
& & \color{blue} \commute & \\
\cat[C] \arrow[r, "F "] \arrow[rr, " \id_{\cat[C]}", bend right = 60] \arrow[rr, "F \cdot G"', bend right = 80,blue, looseness = 1.5]&
\cat[D] \arrow[r, "G", red] \arrow[rr, "\id_{\cat[D]}"', bend left = 60] \arrow[rr, "G \cdot F", bend left = 80,blue, looseness = 1.5]&
\cat[C] \arrow[r, "F "]&
\cat[D] \\
& \color{blue} \commute & &
\end{tikzcd}
\footnote{$\color{red}G$ is called \emph{inverse functor of $F$}}
\end{definition}
%
\begin{definition}[Equivalence]
\parbox{0.35\textwidth}{
$$\textrm{functor} \bulk : \textcolor{red}{\exists \bulk} \textcolor{blue}{\St \exists \bulk}$$
}
\begin{tikzcd}
\cat[C] \arrow[r, "F "] \arrow[rr, " \id_{\cat[C]}"{name=D1, above}, bend right = 60] \arrow[rr, bend right = 80,blue, looseness = 1.5, "F \cdot G"'{name=U1, below}]&
\cat[D] \arrow[r, "G", red] \arrow[rr, "\id_{\cat[D]}"'{name=U2, below}, bend left = 60] \arrow[rr, "G \cdot F"{name=D2}, bend left = 80,blue, looseness = 1.5]&
\cat[C] \arrow[r, "F "]&
\cat[D]
\arrow[Leftrightarrow,blue,"\epsilon", from=U1, to=D1]
\arrow[Leftrightarrow,blue,"\eta", from=U2, to=D2]
\end{tikzcd}
\footnote{$\color{red}G$ is called \emph{Quasi inverse functor of $F$}}
\end{definition}
\begin{proposition}
Given F a functor
$$ \textrm{Equivalence} \Leftrightarrow \textrm{Fully functor and essentially surjective}$$
\end{proposition}
\end{document}