-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcnPDE.m
80 lines (59 loc) · 2.24 KB
/
cnPDE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function u = cnPDE(f,alpha,beta,tEnd,dx,gamma,L)
% Solve the 1D heat equation u_t = gamma*u_{xx} on a rod of length L
% using the Crank-Nicolson method
% u(t,0) = alpha(t)
% u(t,L) = beta(t)
% u(0,x) = f(x)
% The desired spatial resolution is dx
% Output is u = u(tEnd,x_m), a vector of values on the mesh points
% %% Define dt with reference to both error and stability concerns
% Optimal step size dtOpt for stability
dtOpt = nan;
% Forcing an integer numbers of dt steps that terminate at tEnd
dt = tEnd/ceil(tEnd/dtOpt);
% %% Set up helper values for defining the required matrices A and B
% %% such as the number of rows, the value of mu, etc
% %% Define modA for the explicit updating rule
% %% modA-I = (A-I)/2, where I is the identity matrix
% %% Define modB for the implicit updating rule
% %% modB-I = (B-I)/2, where I is the identity matrix
% %% Initialize bAvg = b^(j)+b^(j+1) as a vector of zeros
% %% Define a spatial mesh vector xVals
xVals = [0;0;0];
% %% Set up a column vector u0 of the initial values of u when t=0
u0 = 0;
u = u0;
% %% Initialize the output to the interior points of u0
% To visualize the outputs
p = plot(xVals,u0,"LineWidth",4);
ax = p.Parent;
% Set the y limits to reasonable fixed values
minAlpha = min(alpha(0:dt:tEnd));
maxAlpha = max(alpha(0:dt:tEnd));
minBeta = min(beta(0:dt:tEnd));
maxBeta = max(beta(0:dt:tEnd));
yLower = min([ax.YLim(1),minAlpha,minBeta]);
yUpper = max([ax.YLim(2),maxAlpha,maxBeta]);
scale = (yUpper-yLower)*0.05;
ax.YLim = [yLower-scale yUpper+scale];
% These values generate well-sized y limits for the example function
% used in partialDiffEqs.mlx
ylim([-4 1.5]);
title("Solving $\frac{\partial u}{\partial t} = \gamma \frac{\partial^2 u}{\partial x^2}$","Interpreter","latex")
subtitle("$t=0$","Interpreter","latex")
xlabel("$x$","Interpreter","latex")
ylabel("$u$","Interpreter","latex")
% %% Compute new values for halfB*u^(j+1)-b^(j+1) = halfA*u^(j)+b^(j)
% %% Loop over timesteps to reach tEnd
for j = 1:(tEnd/dt)
% To visualize the outputs
hold on
delete(ax.Children(1:end-1));
plot(xVals,[alpha(j*dt);u;beta(j*dt)],LineWidth=1,SeriesIndex="none")
subtitle("$t = $"+dt*j)
drawnow
pause(0.1)
hold off
% End visualization code
end
end