forked from Vizards8/DQN_Mine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
99 lines (88 loc) · 3.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 21:14:12
LastEditor: John
LastEditTime: 2021-05-04 02:45:27
Discription:
Environment:
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
class MLP(nn.Module):
def __init__(self, input_dim,output_dim,hidden_dim=128):
""" 初始化q网络,为全连接网络
input_dim: 输入的feature即环境的state数目
output_dim: 输出的action总个数
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc4 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc5 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc6 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc7 = nn.Linear(hidden_dim, output_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
# x = F.relu(self.fc1(x))
x = torch.tanh(self.fc1(x))
# x = F.relu(self.fc2(x))
x = torch.tanh(self.fc2(x))
x = torch.tanh(self.fc3(x))
x = torch.tanh(self.fc4(x))
x = torch.tanh(self.fc5(x))
x = torch.tanh(self.fc6(x))
return self.fc7(x)
class Critic(nn.Module):
def __init__(self, n_obs, output_dim, hidden_size, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_obs + output_dim, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
# 随机初始化为较小的值
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
# 按维数1拼接
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class Actor(nn.Module):
def __init__(self, n_obs, output_dim, hidden_size, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_obs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, output_dim)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = torch.tanh(self.linear3(x))
return x
class ActorCritic(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=256):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim),
nn.Softmax(dim=1),
)
def forward(self, x):
value = self.critic(x)
probs = self.actor(x)
dist = Categorical(probs)
return dist, value