-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfield_calculations.py
243 lines (223 loc) · 10.4 KB
/
field_calculations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
""" MovingChargesField class calculates both the electric and magnetic fields
generated from moving point charges, as well as the respective scalar and
vector potentials (in the Lorenz gauge). These are determined numerically at each
grid point by determining the retarded time of each point charge. The Liénard–Wiechert
potentials and corresponding E and B field equations are then evaluated.
"""
import numpy as np
import scipy.constants as constants
from scipy import optimize
# Constants
eps = constants.epsilon_0
mu = constants.mu_0
pi = constants.pi
e = constants.e
c = constants.c
class MovingChargesField():
def __init__(self, charges, h=1e-20):
"""Determines the electric and magnetic fields (E and B) generated from
moving point charge(s) at the specified time and grid points.
Args:
charges (list of :obj: Charge)): Point charge object(s) that generate the fields
h (float, optional): Tolerance for Newton's Method optimization. Defaults to 1e-20.
"""
try:
len(charges)
except TypeError:
charges = [charges]
self.charges = charges
self.h = h # Causes overflow errors if too small
def calculate_E(self, t, X, Y, Z, pcharge_field='Total', plane=False):
"""Calculates the electric field E generated from the point charge(s).
Args:
t (float): Time of simulation in seconds.
X (:obj: ndarray(float, ndim=3)): meshgrid of X values in meters.
Y (:obj: ndarray(float, ndim=3)): meshgrid of Y values in meters.
Z (:obj: ndarray(float, ndim=3)): meshgrid of Z values in meters.
pcharge_field (str, optional): Determines which field generated from the point
charges is calculated: 'Velocity', 'Acceleration', or 'Total'. Defaults to 'Total'.
plane(bool): True if meshgrid is 2 dimensional and returns 2D array. Defaults to False.
Returns:
list of Ex, Ey, and Ez ndarrays which are 2 dimensional if plane is True, otherwise 3.
"""
t_array = np.ones((X.shape))
t_array[:, :, :] = t
Ex = np.zeros((X.shape))
Ey = np.zeros((X.shape))
Ez = np.zeros((X.shape))
for charge in self.charges:
# Determine retarded time of charge to calculate E
tr = optimize.newton(func=charge.retarded_time, x0=t_array,
args=(t_array, X, Y, Z), tol=self.h)
E_field = self._calculate_individual_E(
charge, tr, X, Y, Z, pcharge_field)
Ex += E_field[0]
Ey += E_field[1]
Ez += E_field[2]
if plane:
if X.shape[0] == 1:
return(Ex[0, :, :], Ey[0, :, :], Ez[0, :, :])
elif X.shape[1] == 1:
return(Ex[:, 0, :], Ey[:, 0, :], Ez[:, 0, :])
elif X.shape[2] == 1:
return(Ex[:, :, 0], Ey[:, :, 0], Ez[:, :, 0])
return (Ex, Ey, Ez)
def calculate_B(self, t, X, Y, Z, pcharge_field='Total', plane=False):
"""Calculates the magnetic field B generated from the point charge(s).
Args:
t (float): Time of simulation in seconds.
X (:obj: ndarray(float, ndim=3)): meshgrid of X values in meters.
Y (:obj: ndarray(float, ndim=3)): meshgrid of Y values in meters.
Z (:obj: ndarray(float, ndim=3)): meshgrid of Z values in meters.
pcharge_field (str, optional): Determines which field generated from the point
charges is calculated: 'Velocity', 'Acceleration', or 'Total'. Defaults to 'Total'.
plane(bool): True if meshgrid is 2 dimensional and returns 2D array. Defaults to False.
Returns:
list of Ex, Ey, and Ez ndarrays which are 2 dimensional if plane is True, otherwise 3.
"""
t_array = np.ones((X.shape))
t_array[:, :, :] = t
Bx = np.zeros((X.shape))
By = np.zeros((X.shape))
Bz = np.zeros((X.shape))
for charge in self.charges:
# Determine retarded time of charge to calculate B
tr = optimize.newton(func=charge.retarded_time, x0=t_array,
args=(t_array, X, Y, Z), tol=self.h)
Ex, Ey, Ez = self._calculate_individual_E(
charge, tr, X, Y, Z, pcharge_field)
rx = X - charge.xpos(tr)
ry = Y - charge.ypos(tr)
rz = Z - charge.zpos(tr)
r_mag = (rx**2 + ry**2 + rz**2)**0.5
# Griffiths Eq. 10.73
Bx += 1/(c*r_mag)*(ry*Ez-rz*Ey)
By += 1/(c*r_mag)*(rz*Ex-rx*Ez)
Bz += 1/(c*r_mag)*(rx*Ey-ry*Ex)
if plane:
if X.shape[0] == 1:
return(Bx[0, :, :], By[0, :, :], Bz[0, :, :])
elif X.shape[1] == 1:
return(Bx[:, 0, :], By[:, 0, :], Bz[:, 0, :])
elif X.shape[2] == 1:
return(Bx[:, :, 0], By[:, :, 0], Bz[:, :, 0])
return (Bx, By, Bz)
def _calculate_individual_E(self, charge, tr, X, Y, Z, pcharge_field):
"Calculates the electric field generated from an individual point charge."
# retarded position to field point - Griffiths Eq. 10.54
rx = X - charge.xpos(tr)
ry = Y - charge.ypos(tr)
rz = Z - charge.zpos(tr)
r_mag = (rx**2 + ry**2 + rz**2)**0.5
vx = charge.xvel(tr) # retarded velocity - Griffiths Eq. 10.54
vy = charge.yvel(tr)
vz = charge.zvel(tr)
ax = charge.xacc(tr) # retarded acceleration
ay = charge.yacc(tr)
az = charge.zacc(tr)
ux = c*rx/r_mag - vx # Griffiths Eq. 10.71
uy = c*ry/r_mag - vy
uz = c*rz/r_mag - vz
r_dot_u = rx*ux + ry*uy + rz*uz
r_dot_a = rx*ax + ry*ay + rz*az
vel_mag = (vx**2 + vy**2 + vz**2)**0.5
# Griffiths Eq. 10.72
const = e/(4*pi*eps) * r_mag/(r_dot_u)**3
if not charge.pos_charge: # negative charge
const *= -1
xvel_field = const*(c**2-vel_mag**2)*ux
yvel_field = const*(c**2-vel_mag**2)*uy
zvel_field = const*(c**2-vel_mag**2)*uz
# Using triple product rule to simplify Eq. 10.72
xacc_field = const*(r_dot_a*ux - r_dot_u*ax)
yacc_field = const*(r_dot_a*uy - r_dot_u*ay)
zacc_field = const*(r_dot_a*uz - r_dot_u*az)
if pcharge_field == 'Velocity':
return (xvel_field, yvel_field, zvel_field)
if pcharge_field == 'Acceleration':
return (xacc_field, yacc_field, zacc_field)
if pcharge_field == 'Total':
return (xvel_field+xacc_field, yvel_field+yacc_field,
zvel_field+zacc_field)
def calculate_potentials(self, t, X, Y, Z, plane=False):
"""Calculates the magnetic field B generated from the point charge(s).
Args:
t (float): Time of simulation in seconds.
X (:obj: ndarray(float, ndim=3)): meshgrid of X values in meters.
Y (:obj: ndarray(float, ndim=3)): meshgrid of Y values in meters.
Z (:obj: ndarray(float, ndim=3)): meshgrid of Z values in meters.
plane(bool): True if meshgrid is 2 dimensional and returns 2D array. Defaults to False.
Returns:
list of V, Ax, Ay, and Az ndarrays which are 2 dimensional if plane is True, otherwise 3.
"""
t_array = np.ones((X.shape))
t_array[:, :, :] = t
V = np.zeros((X.shape))
Ax = np.zeros((X.shape))
Ay = np.zeros((X.shape))
Az = np.zeros((X.shape))
for charge in self.charges:
# Determine retarded time of charge to calculate potentials
tr = optimize.newton(func=charge.retarded_time, x0=t_array,
args=(t_array, X, Y, Z), tol=self.h)
# retarded position to field point - Griffiths Eq. 10.54
rx = X - charge.xpos(tr)
ry = Y - charge.ypos(tr)
rz = Z - charge.zpos(tr)
r_mag = (rx**2 + ry**2 + rz**2)**0.5
vx = charge.xvel(tr) # retarded velocity - Griffiths Eq. 10.54
vy = charge.yvel(tr)
vz = charge.zvel(tr)
r_dot_v = rx*vx + ry*vy + rz*vz
# Griffiths Eq. 10.53
if charge.pos_charge:
individual_V = e*c/(4*pi*eps*(r_mag*c-r_dot_v))
else:
individual_V = -e*c/(4*pi*eps*(r_mag*c-r_dot_v))
V += individual_V
# Griffiths Eq. 10.53
Ax += vx/c**2*individual_V
Ay += vy/c**2*individual_V
Az += vz/c**2*individual_V
if plane:
if X.shape[0] == 1:
return(V[0, :, :], Ax[0, :, :], Ay[0, :, :], Az[0, :, :])
elif X.shape[1] == 1:
return(V[:, 0, :], Ax[:, 0, :], Ay[:, 0, :], Az[:, 0, :])
elif X.shape[2] == 1:
return(V[:, :, 0], Ax[:, :, 0], Ay[:, :, 0], Az[:, :, 0])
return (V, Ax, Ay, Az)
def calculate_Poynting(self, t, X, Y, Z, plane=False):
"""Calculates the Poynting vector S generated from the point charge(s).
Args:
t (float): Time of simulation in seconds.
X (:obj: ndarray(float, ndim=3)): meshgrid of X values in meters.
Y (:obj: ndarray(float, ndim=3)): meshgrid of Y values in meters.
Z (:obj: ndarray(float, ndim=3)): meshgrid of Z values in meters.
plane(bool): True if meshgrid is 2 dimensional and returns 2D array. Defaults to False.
Returns:
S ndarray which are 2 dimensional if plane is True, otherwise 3.
"""
t_array = np.ones((X.shape))
t_array[:, :, :] = t
Ex = np.zeros((X.shape))
Ey = np.zeros((X.shape))
Ez = np.zeros((X.shape))
for charge in self.charges:
# Determine retarded time of charge to calculate E
tr = optimize.newton(func=charge.retarded_time, x0=t_array,
args=(t_array, X, Y, Z), tol=self.h)
E_field = self._calculate_individual_E(
charge, tr, X, Y, Z, 'Acceleration')
Ex += E_field[0]
Ey += E_field[1]
Ez += E_field[2]
S = 1/(mu*c)*(Ex**2+Ey**2+Ez**2) # Griffiths 11.67
if plane:
if X.shape[0] == 1:
return S[0, :, :]
elif X.shape[1] == 1:
return S[:, 0, :]
elif X.shape[2] == 1:
return S[:, :, 0]
return S