-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultibars.py
378 lines (319 loc) · 14.7 KB
/
multibars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# -*- coding: utf-8 -*-
import numpy as np
import math
import cv2
import matplotlib.pyplot as plt
class MagnetBar:
empCount = 0
def __init__(self, x_length, y_length, center, angle, canvas):
self.x_length = x_length
self.y_length = y_length
self.center = center
self.angle = angle
self.sin_theta = math.sin(angle)
self.cos_theta = math.cos(angle)
self.canvas = canvas
self.margin_point = []
self.get_margin_point()
self.dipoles = []
self.init_dipoles()
# 全部写完后可以删掉
# self.draw_margin()
# # self.draw_contour()
def get_margin_point(self):
# 1:left up;
# 2:left down;
# 3:right top;
# 4:right down
x_c1 = self.center[0] - self.y_length/2 * math.sin(self.angle)
y_c1 = self.center[1] - self.y_length/2 * math.cos(self.angle)
x_c2 = self.center[0] + self.y_length/2 * math.sin(self.angle)
y_c2 = self.center[1] + self.y_length/2 * math.cos(self.angle)
# 最左边的顶点的位置坐标
x_l1 = int(x_c1 - self.x_length / 2 * math.cos(self.angle))
x_l2 = int(x_c2 - self.x_length / 2 * math.cos(self.angle))
y_l1 = int(y_c1 + self.x_length / 2 * math.sin(self.angle))
y_l2 = int(y_c2 + self.x_length / 2 * math.sin(self.angle))
self.margin_point.append((x_l1, y_l1))
self.margin_point.append((x_l2, y_l2))
# 最右边的顶点的位置坐标
x_r1 = int(x_c1 + self.x_length / 2 * math.cos(self.angle))
x_r2 = int(x_c2 + self.x_length / 2 * math.cos(self.angle))
y_r1 = int(y_c1 - self.x_length / 2 * math.sin(self.angle))
y_r2 = int(y_c2 - self.x_length / 2 * math.sin(self.angle))
self.margin_point.append((x_r1, y_r1))
self.margin_point.append((x_r2, y_r2))
def is_inside(self, point):
x = point[0]
y = point[1]
def is_inside(center, point):
if point[0] >= center[0] + self.x_length / 2.0 - 3:
return False
elif point[0] <= center[0] - self.x_length / 2.0 + 3:
return False
elif point[1] >= center[1] + self.y_length / 2.0 - 3:
return False
elif point[1] <= center[1] - self.y_length / 2.0 + 3:
return False
else:
return True
if self.angle == 0:
return is_inside(self.center, point)
else:
r_point_x = (x - self.center[0]) * self.cos_theta - (y - self.center[1]) * self.sin_theta
r_point_y = (x - self.center[0]) * self.sin_theta + (y - self.center[1]) * self.cos_theta
r_point = (r_point_x, r_point_y)
return is_inside((0, 0), r_point)
def init_dipoles(self):
row_num = 12
column_num = 5
left_middle_x = (self.margin_point[0][0] + self.margin_point[1][0]) / 2
left_middle_y = (self.margin_point[0][1] + self.margin_point[1][1]) / 2
right_middle_x = (self.margin_point[2][0] + self.margin_point[3][0]) / 2
right_middle_y = (self.margin_point[2][1] + self.margin_point[3][1]) / 2
left_middle_middle1_x = (self.margin_point[0][0] + left_middle_x) / 2
left_middle_middle1_y = (self.margin_point[0][1] + left_middle_y) / 2
right_middle_middle1_x = (self.margin_point[2][0] + right_middle_x) / 2
right_middle_middle1_y = (self.margin_point[2][1] + right_middle_y) / 2
left_middle_middle2_x = (self.margin_point[1][0] + left_middle_x) / 2
left_middle_middle2_y = (self.margin_point[1][1] + left_middle_y) / 2
right_middle_middle2_x = (self.margin_point[3][0] + right_middle_x) / 2
right_middle_middle2_y = (self.margin_point[3][1] + right_middle_y) / 2
for i in range(1, row_num):
x = int(float(i) / row_num * float(left_middle_middle1_x) + float(row_num - i) / row_num *
float(right_middle_middle1_x))
y = int(float(i) / row_num * float(left_middle_middle1_y) + float(row_num - i) / row_num *
float(right_middle_middle1_y))
self.dipoles.append((x, y))
x = int(float(i) / row_num * float(left_middle_x) + float(row_num - i) / row_num * float(right_middle_x))
y = int(float(i) / row_num * left_middle_y + float(row_num - i) / row_num * right_middle_y)
self.dipoles.append((x, y))
x = int(float(i) / row_num * float(left_middle_middle2_x) + float(row_num - i) / row_num *
float(right_middle_middle2_x))
y = int(float(i) / row_num * float(left_middle_middle2_y) + float(row_num - i) / row_num *
float(right_middle_middle2_y))
self.dipoles.append((x, y))
def get_b(self, x, y):
# print x, y
# b分别是x方向和y方向的磁场大小
b = np.empty(2)
b[0] = 0.0
b[1] = 0.0
scale = 8.0
c = 3.0
add_b = []
for i in range(0, len(self.dipoles)):
dx = x - self.dipoles[i][0]
dy = y - self.dipoles[i][1]
r2 = dx * dx + dy * dy
if r2 == 0:
add_b_x = 0
add_b_y = 0
else:
r = math.sqrt(r2)
r3 = r * r2
cos = dx / r
sin = dy / r
m_dot_r = self.cos_theta * cos - self.sin_theta * sin
# add_b_x = math.fabs(scale * (c * cos * cos - 1) / r3)
# add_b_y = math.fabs(scale * (c * sin * cos) / r3)
#
# if dx < 0:
# add_b_x = -add_b_x
# if dy < 0:
# add_b_y = -add_b_y
add_b_x = scale * (c * cos * m_dot_r - self.cos_theta) / r3
add_b_y = scale * (c * sin * m_dot_r + self.sin_theta) / r3
# print add_b_x * add_b_x + add_b_y * add_b_y
add_b.append((add_b_x, add_b_y, add_b_x * add_b_x + add_b_y * add_b_y))
# b[0] = b[0] - add_b_x
# b[1] = b[1] - add_b_y
# 想着减少舍入误差,但是貌似没什么乱用,懒得改了留着吧
add_b.sort(key=(lambda x: x[2]))
add_b = list(zip(*add_b))
b[0] = -sum(add_b[0])
b[1] = -sum(add_b[1])
return b
def draw_margin(self):
margin = self.margin_point
red = (0, 0, 255)
for i in range(len(margin)):
cv2.circle(self.canvas, margin[i], 4, red)
def draw_dipoles(self):
purple = (153, 50, 204)
for i in range(len(self.dipoles)):
x = self.dipoles[i][0]
y = self.dipoles[i][1]
cv2.circle(self.canvas, (int(x), int(y)), 4, purple)
# print self.dipoles[i]
def draw_contour(self):
purple = (153, 50, 204)
cv2.rectangle(self.canvas, self.margin_point[0], self.margin_point[3], purple)
class MultiBars:
empCount = 0
def __init__(self, bar_list, canvas):
self.bar_list = bar_list
# self.dipoles = []
# self.init_dipoles()
self.canvas = canvas
def is_inside(self, point):
for bar in self.bar_list:
is_inside = bar.is_inside(point)
if is_inside:
return is_inside
return is_inside
'''
def init_dipoles(self):
for bar in self.bar_list:
self.dipoles.extend(bar.dipoles)
'''
def get_b(self, x, y):
b = np.empty(2)
b[0] = 0.0
b[1] = 0.0
for bar in self.bar_list:
b[0] = b[0] + bar.get_b(x, y)[0]
b[1] = b[1] + bar.get_b(x, y)[1]
return b
def draw_magnets(self):
red = (0, 0, 255)
for bar in self.bar_list:
# 设置左端头的出发点
start_num = 10
start_point = []
for i in range(1, start_num):
x = int(float(i) / start_num * float(bar.margin_point[0][0]) + float(start_num - i) /
start_num * float(bar.margin_point[1][0]))
y = int(float(i) / start_num * float(bar.margin_point[0][1]) + float(start_num - i) /
start_num * float(bar.margin_point[1][1]))
cv2.circle(self.canvas, (int(x), int(y)), 4, red)
start_point.append((int(x), int(y)))
for i in range(start_num - 1):
k = 0
new_x = start_point[i][0]
new_y = start_point[i][1]
# 这里如果画布大小改变的话参数需要跟着变
while ((not self.is_inside((new_x, new_y))) and (new_x < 1280)
and (new_y < 720) and (new_x > 0) and (new_y > 0)):
old_x = new_x
old_y = new_y
new_b = self.get_b(new_x, new_y)
old_b = new_b
b_length = math.sqrt(new_b[0] * new_b[0] + new_b[1] * new_b[1])
new_x = old_x + old_b[0]
new_y = old_y + old_b[1]
new_b = self.get_b(new_x, new_y)
b_length_new = math.sqrt(new_b[0] * new_b[0] + new_b[1] * new_b[1])
cos = (new_b[0] * old_b[0] + new_b[1] * old_b[1]) / (b_length * b_length_new)
while cos < 1 / 2:
old_b[0] = old_b[0] / 2
old_b[1] = old_b[1] / 2
b_length = b_length / 2
new_x = old_x + old_b[0]
new_y = old_y + old_b[1]
new_b = self.get_b(new_x, new_y)
b_length_new = math.sqrt(new_b[0] * new_b[0] + new_b[1] * new_b[1])
cos = (new_b[0] * old_b[0] + new_b[1] * old_b[1]) / (b_length * b_length_new)
uniform = max(math.fabs(old_b[0]), math.fabs(old_b[1]))
uniform_min = min(math.fabs(old_b[0]), math.fabs(old_b[1]))
if uniform_min < 1:
old_b[0] = old_b[0] / uniform_min
old_b[1] = old_b[1] / uniform_min
b_length = b_length / uniform_min
elif uniform > 5:
old_b[0] = old_b[0] / uniform
old_b[1] = old_b[1] / uniform
b_length = b_length / uniform
while b_length > 5:
old_b[0] = old_b[0] / 2
old_b[1] = old_b[1] / 2
b_length = b_length / 2
new_x = old_x + old_b[0]
new_y = old_y + old_b[1]
# print(old_b[0], old_b[1])
cv2.line(self.canvas, (int(old_x), int(old_y)), (int(new_x), int(new_y)), red, 3)
# cv2.circle(img, (int(new_x), int(new_y)), 1, color)
k = k + 1
# 设置右端头的出发点
right_start_point = []
for i in range(1, start_num):
x = int(float(i) / start_num * float(bar.margin_point[2][0]) + float(start_num - i) /
start_num * float(bar.margin_point[3][0]))
y = int(float(i) / start_num * float(bar.margin_point[2][1]) + float(start_num - i) /
start_num * float(bar.margin_point[3][1]))
cv2.circle(bar.canvas, (int(x), int(y)), 4, red)
right_start_point.append((int(x), int(y)))
# 画右端头开始的线
for i in range(start_num - 1):
k = 0
new_x = right_start_point[i][0]
new_y = right_start_point[i][1]
# 这里如果画布大小改变的话参数需要跟着变
while ((not self.is_inside((new_x, new_y))) and (new_x < 1280) and (new_y < 720)
and (new_x > 0) and (new_y > 0)):
old_x = new_x
old_y = new_y
new_b = self.get_b(new_x, new_y)
new_b[0] = -new_b[0]
new_b[1] = -new_b[1]
old_b = new_b
b_length = math.sqrt(new_b[0] * new_b[0] + new_b[1] * new_b[1])
new_x = old_x + old_b[0]
new_y = old_y + old_b[1]
new_b = self.get_b(new_x, new_y)
new_b[0] = - new_b[0]
new_b[1] = - new_b[1]
b_length_new = math.sqrt(new_b[0] * new_b[0] + new_b[1] * new_b[1])
cos = (new_b[0] * old_b[0] + new_b[1] * old_b[1]) / (b_length * b_length_new)
while cos < 1 / 2:
old_b[0] = old_b[0] / 2
old_b[1] = old_b[1] / 2
b_length = b_length / 2
new_x = old_x + old_b[0]
new_y = old_y + old_b[1]
new_b = self.get_b(new_x, new_y)
b_length_new = math.sqrt(new_b[0] * new_b[0] + new_b[1] * new_b[1])
cos = (new_b[0] * old_b[0] + new_b[1] * old_b[1]) / (b_length * b_length_new)
uniform = max(math.fabs(old_b[0]), math.fabs(old_b[1]))
uniform_min = min(math.fabs(old_b[0]), math.fabs(old_b[1]))
if uniform_min < 1:
old_b[0] = old_b[0] / uniform_min
old_b[1] = old_b[1] / uniform_min
b_length = b_length / uniform_min
elif uniform > 5:
old_b[0] = old_b[0] / uniform
old_b[1] = old_b[1] / uniform
b_length = b_length / uniform
while b_length > 5:
old_b[0] = old_b[0] / 2
old_b[1] = old_b[1] / 2
b_length = b_length / 2
# print(old_b)
new_x = old_x + old_b[0]
new_y = old_y + old_b[1]
cv2.line(self.canvas, (int(old_x), int(old_y)), (int(new_x), int(new_y)), red, 3)
# cv2.circle(img, (int(new_x), int(new_y)), 1, color)
k = k + 1
# if __name__ == "__main__":
# canvas = np.zeros((720, 1280, 3), dtype="uint8")
# x_length = 100
# y_length = 20
# x_center1 = 650
# y_center1 = 200
# x_center2 = 650
# y_center2 = 500
# bar1 = MagnetBar(x_length, y_length, (x_center1, y_center1), 0, canvas)
# bar2 = MagnetBar(x_length, y_length, (x_center2, y_center2), math.pi, canvas)
# bars = []
# bars.append(bar1)
# bars.append(bar2)
#
# multi_bar = MultiBars(bars, canvas)
# multi_bar.draw_magnets()
#
# # plt.imshow(canvas[..., ::-1])
# # plt.show()
#
# cv2.imshow("Canvas", canvas)
# # cv2.imwrite("canvas.jpg", canvas)
# cv2.waitKey(0)