This is my IaC repo for my home operations on Kubernetes!
Important
- The default behaviour of k3s is that all nodes are able to run workloads, including control nodes. Worker nodes are therefore optional.
- Do you have 3 or more nodes? It is strongly recommended to make 3 of them control nodes for a highly available control plane.
- Running the cluster on Proxmox VE? My thoughts and recommendations about that are documented here.
Role | Cores | Memory | System Disk |
---|---|---|---|
Control | 4 (6*) | 8GB (24GB*) | 100GB (500GB*) SSD/NVMe |
Worker | 4 (6*) | 8GB (24GB*) | 100GB (500GB*) SSD/NVMe |
* recommended |
-
Download the latest stable release of Debian from here, then follow this guide to get it installed. Deviations from the guide:
Choose "Guided - use entire disk" Choose "All files in one partition" Delete Swap partition Uncheck all Debian desktop environment options
-
[Post install] Remove CD/DVD as apt source
su - sed -i '/deb cdrom/d' /etc/apt/sources.list apt update exit
-
[Post install] Enable sudo for your non-root user
su - apt update apt install -y sudo usermod -aG sudo ${username} echo "${username} ALL=(ALL) NOPASSWD:ALL" | tee /etc/sudoers.d/${username} exit newgrp sudo sudo apt update
-
[Post install] Add SSH keys (or use
ssh-copy-id
on the client that is connecting)π First make sure your ssh keys are up-to-date and added to your github account as instructed.
mkdir -m 700 ~/.ssh sudo apt install -y curl curl https://github.com/${github_username}.keys > ~/.ssh/authorized_keys chmod 600 ~/.ssh/authorized_keys
Caution
- It is recommended to have an 8GB RasPi model. Most important is to boot from an external SSD/NVMe rather than an SD card. This is supported natively, however if you have an early model you may need to update the bootloader first.
- Check the power requirements if using a PoE Hat and a SSD/NVMe dongle.
-
Download the latest stable release of Debian from here. Do not use Raspbian or DietPi or any other flavor Linux OS.
-
Flash the image onto an SSD/NVMe drive.
-
Re-mount the drive to your workstation and then do the following (per the official documentation):
Open 'sysconf.txt' in a text editor and save it upon updating the information below - Change 'root_authorized_key' to your desired public SSH key - Change 'root_pw' to your desired root password - Change 'hostname' to your desired hostname
-
Connect SSD/NVMe drive to the Raspberry Pi 4 and power it on.
-
[Post install] SSH into the device with the
root
user and then create a normal user account withadduser ${username}
-
[Post install] Follow steps 3 and 4 from Debian for AMD64.
-
[Post install] Install
python3
which is needed by Ansible.sudo apt install -y python3
Once you have installed Debian on your nodes, there are six stages to getting a Flux-managed cluster up and runnning.
Caution
For all stages below the commands MUST be ran on your personal workstation within your repository directory
-
Create a new public repository by clicking the big green "Use this template" button at the top of this page.
-
Clone your new repo to you local workstation and
cd
into it.
-
Install the most recent version of task, see the task installation docs for other supported platforms.
# Brew brew install go-task
-
Install the most recent version of direnv, see the direnv installation docs for other supported platforms.
π After installing
direnv
be sure to hook it into your shell and after that is done rundirenv allow
while in your repos' directory.# Brew brew install direnv
-
Setup a Python virual env and install Ansible by running the following task command.
π This commands requires Python 3.10+ to be installed
# Platform agnostic task deps
-
Install the required tools: age, flux, cloudflared, kubectl, sops
π Not using brew? Make sure to look up how to install the latest version of each of these CLI tools yourself.
# Brew task brew:deps
π Both bootstrap/vars/config.yaml
and bootstrap/vars/addons.yaml
files contain necessary information that is vital to the bootstrap process.
-
Generate the
bootstrap/vars/config.yaml
andbootstrap/vars/addons.yaml
configuration files.task init
-
Setup Age private / public key
π Using SOPS with Age allows us to encrypt secrets and use them in Ansible and Flux.
2a. Create a Age private / public key (this file is gitignored)
age-keygen -o age.key
2b. Fill out the appropriate vars in
bootstrap/vars/config.yaml
-
Create Cloudflare API Token
π To use
cert-manager
with the Cloudflare DNS challenge you will need to create a API Token.3a. Head over to Cloudflare and create a API Token by going here.
3b. Under the
API Tokens
section click the blueCreate Token
button.3c. Click the blue
Use template
button for theEdit zone DNS
template.3d. Name your token something like
home-kubernetes
3e. Under
Permissions
, click+ Add More
and add each permission below:Zone - DNS - Edit Account - Cloudflare Tunnel - Read
3f. Limit the permissions to a specific account and zone resources.
3g. Fill out the appropriate vars in
bootstrap/vars/config.yaml
-
Create Cloudflare Tunnel
π To expose services to the internet you will need to create a Cloudflare Tunnel.
4a. Authenticate cloudflared to your domain
cloudflared tunnel login
4b. Create the tunnel
cloudflared tunnel create k8s
4c. In the
~/.cloudflared
directory there will be a json file with details you need. Ignore thecert.pem
file.4d. Fill out the appropriate vars in
bootstrap/vars/config.yaml
-
Complete filling out the rest of the
bootstrap/vars/config.yaml
configuration file.5a. Ensure
bootstrap_acme_production_enabled
is set tofalse
.5b. [Optional] Update
bootstrap/vars/addons.yaml
and enable applications you would like included. -
Once done run the following command which will verify and generate all the files needed to continue.
task configure
Important
The configure task will create a ./ansible
directory and the following directories under ./kubernetes
.
π kubernetes # Kubernetes cluster defined as code
ββπ bootstrap # Flux installation (not tracked by Flux)
ββπ flux # Main Flux configuration of repository
ββπ apps # Apps deployed into the cluster grouped by namespace
π Here we will be running an Ansible playbook to prepare your nodes for running a Kubernetes cluster.
-
Ensure you are able to SSH into your nodes from your workstation using a private SSH key without a passphrase (for example using a SSH agent). This lets Ansible interact with your nodes.
-
Verify Ansible can view your config
task ansible:list
-
Verify Ansible can ping your nodes
task ansible:ping
-
Run the Ansible prepare playbook (nodes wil reboot when done)
task ansible:prepare
π Here we will be running a Ansible Playbook to install k3s with this Ansible galaxy role. If you run into problems, you can run task ansible:nuke
to destroy the k3s cluster and start over from this point.
-
Verify Ansible can view your config
task ansible:list
-
Verify Ansible can ping your nodes
task ansible:ping
-
Install k3s with Ansible
task ansible:install
-
Verify the nodes are online
π If this command fails you likely haven't configured
direnv
as mentioned previously in the guide.kubectl get nodes -o wide # NAME STATUS ROLES AGE VERSION # k8s-0 Ready control-plane,etcd,master 1h v1.27.3+k3s1 # k8s-1 Ready worker 1h v1.27.3+k3s1
-
The
kubeconfig
for interacting with your cluster should have been created in the root of your repository.
π Here we will be installing flux after some quick bootstrap steps.
-
Verify Flux can be installed
flux check --pre # βΊ checking prerequisites # β kubectl 1.27.3 >=1.18.0-0 # β Kubernetes 1.27.3+k3s1 >=1.16.0-0 # β prerequisites checks passed
-
Push you changes to git
π Verify all the
*.sops.yaml
and*.sops.yaml
files under the./ansible
, and./kubernetes
directories are encrypted with SOPSgit add -A git commit -m "Initial commit :rocket:" git push
-
Install Flux and sync the cluster to the Git repository
task cluster:install # namespace/flux-system configured # customresourcedefinition.apiextensions.k8s.io/alerts.notification.toolkit.fluxcd.io created # ...
-
Verify Flux components are running in the cluster
kubectl -n flux-system get pods -o wide # NAME READY STATUS RESTARTS AGE # helm-controller-5bbd94c75-89sb4 1/1 Running 0 1h # kustomize-controller-7b67b6b77d-nqc67 1/1 Running 0 1h # notification-controller-7c46575844-k4bvr 1/1 Running 0 1h # source-controller-7d6875bcb4-zqw9f 1/1 Running 0 1h
Mic check, 1, 2 - In a few moments applications should be lighting up like Christmas in July π
-
Output all the common resources in your cluster.
π Feel free to use the provided cluster tasks for validation of cluster resources or continue to get familiar with the
kubectl
andflux
CLI tools.task cluster:resources
-
β οΈ It might takecert-manager
awhile to generate certificates, this is normal so be patient. -
π Congratulations if all goes smooth you will have a Kubernetes cluster managed by Flux and your Git repository is driving the state of your cluster.
-
π§ Now it's time to pause and go get some motel motor oil β and admire you made it this far!
The external-dns
application created in the networking
namespace will handle creating public DNS records. By default, echo-server
and the flux-webhook
are the only subdomains reachable from the public internet. In order to make additional applications public you must set set the correct ingress class name and ingress annotations like in the HelmRelease for echo-server
.
k8s_gateway
will provide DNS resolution to external Kubernetes resources (i.e. points of entry to the cluster) from any device that uses your home DNS server. For this to work, your home DNS server must be configured to forward DNS queries for ${bootstrap_cloudflare_domain}
to ${bootstrap_k8s_gateway_addr}
instead of the upstream DNS server(s) it normally uses. This is a form of split DNS (aka split-horizon DNS / conditional forwarding).
Tip
Below is how to configure a Pi-hole for split DNS. Other platforms should be similar.
- Apply this file on the server
# /etc/dnsmasq.d/99-k8s-gateway-forward.conf
server=/${bootstrap_cloudflare_domain}/${bootstrap_k8s_gateway_addr}
- Restart dnsmasq on the server.
- Query an internal-only subdomain from your workstation (any
internal
class ingresses):dig @${home-dns-server-ip} hubble.${bootstrap_cloudflare_domain}
. It should resolve to${bootstrap_internal_ingress_addr}
.
If you're having trouble with DNS be sure to check out these two GitHub discussions: Internal DNS and Pod DNS resolution broken.
... Nothing working? That is expected, this is DNS after all!
By default this template will deploy a wildcard certificate using the Let's Encrypt staging environment, which prevents you from getting rate-limited by the Let's Encrypt production servers if your cluster doesn't deploy properly (for example due to a misconfiguration). Once you are sure you will keep the cluster up for more than a few hours be sure to switch to the production servers as outlined in config.yaml
.
π You will need a production certificate to reach internet-exposed applications through cloudflared
.
By default Flux will periodically check your git repository for changes. In order to have Flux reconcile on git push
you must configure Github to send push
events.
-
Obtain the webhook path
π Hook id and path should look like
/hook/12ebd1e363c641dc3c2e430ecf3cee2b3c7a5ac9e1234506f6f5f3ce1230e123
kubectl -n flux-system get receiver github-receiver -o jsonpath='{.status.webhookPath}'
-
Piece together the full URL with the webhook path appended
https://flux-webhook.${bootstrap_cloudflare_domain}/hook/12ebd1e363c641dc3c2e430ecf3cee2b3c7a5ac9e1234506f6f5f3ce1230e123
-
Navigate to the settings of your repository on Github, under "Settings/Webhooks" press the "Add webhook" button. Fill in the webhook url and your
bootstrap_flux_github_webhook_token
secret and save.
Renovate is a tool that automates dependency management. It is designed to scan your repository around the clock and open PRs for out-of-date dependencies it finds. Common dependencies it can discover are Helm charts, container images, GitHub Actions, Ansible roles... even Flux itself! Merging a PR will cause Flux to apply the update to your cluster.
To enable Renovate, click the 'Configure' button over at their Github app page and select your repository. Renovate creates a "Dependency Dashboard" as an issue in your repository, giving an overview of the status of all updates. The dashboard has interactive checkboxes that let you do things like advance scheduling or reattempt update PRs you closed without merging.
The base Renovate configuration in your repository can be viewed at .github/renovate.json5. By default it is scheduled to be active with PRs every weekend, but you can change the schedule to anything you want, or remove it if you want Renovate to open PRs right away.