-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLinearLayer.java
executable file
·122 lines (108 loc) · 3.61 KB
/
LinearLayer.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import java.util.Arrays;
import java.util.HashMap;
import java.util.Vector;
import java.util.stream.Collectors;
public class LinearLayer extends Layer{
RelNeuron[] relNeurons;
HashMap<String, HashMap<String, String>> data;
public LinearLayer(RelNeuron[] relNeurons){
this.relNeurons = relNeurons;
this.layerType = "linear";
}
@Override
public void set_data(HashMap<String, HashMap<String, String>> data) {
// TODO Auto-generated method stub
this.data = data;
}
@Override
public void set_inputs(HashMap<String, HashMap<String, String>> inputs) {
// TODO Auto-generated method stub
this.inputs = new HashMap<String, HashMap<String, String>>();
this.inputs.putAll(inputs);
this.inputs.putAll(this.data);
}
@Override
public HashMap<String, HashMap<String, String>> calc_output() {
// TODO Auto-generated method stub
this.output = new HashMap<String, HashMap<String, String>>();
for(RelNeuron relNeuron : this.relNeurons){
this.output.put(relNeuron.name(), relNeuron.evaluate_all(this.inputs));
}
return this.output;
}
@Override
public void calc_parameters_d(HashMap<String, HashMap<String, Double>> coming_error) {
// TODO Auto-generated method stub
for(RelNeuron relNeuron : this.relNeurons){
relNeuron.calc_weights_d(coming_error.get(relNeuron.name()));
}
}
@Override
public void update_parameters() {
// TODO Auto-generated method stub
for(RelNeuron relNeuron : this.relNeurons){
relNeuron.update_weights();
}
}
@Override
public HashMap<String, HashMap<String, Double>> calc_inputs_d(HashMap<String, HashMap<String, Double>> coming_error) {
// TODO Auto-generated method stub
this.inputs_d = new HashMap<String, HashMap<String, Double>>();
for(RelNeuron relNeuron : this.relNeurons){
for(WeightedFormula wf : relNeuron.wfs){
if(!wf.isBase()){
for(Literal literal : wf.literals){
if(!literal.prv.type.equals("observed_input")){
HashMap<String, Double> eval_excluding = wf.evaluate_excluding(this.inputs, coming_error.get(relNeuron.name()), relNeuron.child, literal.logvars(), literal.name());
if(!this.inputs_d.containsKey(literal.name()))
this.inputs_d.put(literal.name(), new HashMap<String, Double>());
for(String assignment : eval_excluding.keySet()){
double previous_value = this.inputs_d.get(literal.name()).getOrDefault(assignment, 0.0);
this.inputs_d.get(literal.name()).put(assignment, previous_value + eval_excluding.get(assignment));
}
}
}
}
}
}
return this.inputs_d;
}
@Override
public void set_targets(HashMap<String, String> targets) {
// TODO Auto-generated method stub
}
@Override
public void assign_random_params() {
// TODO Auto-generated method stub
for(RelNeuron relNeuron : this.relNeurons){
for(WeightedFormula wf : relNeuron.wfs){
wf.weight = Math.random() * GlobalParams.maxRandom - GlobalParams.maxRandom / 2;
}
}
}
@Override
public void save_params() {
// TODO Auto-generated method stub
for(RelNeuron relNeuron : this.relNeurons){
for(WeightedFormula wf : relNeuron.wfs){
wf.best_weight = wf.weight;
}
}
}
@Override
public void use_best_params() {
// TODO Auto-generated method stub
for(RelNeuron relNeuron : this.relNeurons){
for(WeightedFormula wf : relNeuron.wfs){
wf.weight = wf.best_weight;
}
}
}
@Override
public String my2String() {
// TODO Auto-generated method stub
String output = "This is a linear layer with the following relational neurons:\n";
output += String.join("\n", Arrays.stream(this.relNeurons).map(relNeuron -> relNeuron.my2String()).collect(Collectors.toList()));
return output;
}
}