-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMovieLensGender.java
executable file
·398 lines (348 loc) · 17.3 KB
/
MovieLensGender.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Scanner;
import java.util.Set;
import java.util.Vector;
public class MovieLensGender {
ArrayList<String> train;
ArrayList<String> test;
HashMap<String, User> users;
HashMap<String, Movie> movies;
HashMap<String, String> similar;
public MovieLensGender(){
users = new HashMap<String, User>();
movies = new HashMap<String, Movie>();
similar = new HashMap<String, String>();
}
public void setHyperParams(){
//These are not the best values for hyper-parameters.
//Find the best values over a validation set.
GlobalParams.ethaForWeights = 0.01; //Learning rate for weights
GlobalParams.ethaForHiddens = 0.03; //Learning rate for numeric latent properties
GlobalParams.lambdaForWeights = 0.0002; //Regularization hyper-parameter for weights
GlobalParams.lambdaForHiddens = 0.0002; //Regularization hyper-parameter for numeric latent properties
GlobalParams.lambdaForMean = 0.85; //Regularization towards the mean
GlobalParams.numIteration = 300; //Maximum number of iterations
GlobalParams.numRandomWalk = 1; //Initialize the network K times and pick the best initialization
GlobalParams.splitPercentage = 0.80; //Split data for train/test
GlobalParams.regularizationTypeForWeights = "L1"; //Type of regularization for weights
GlobalParams.regularizationTypeForHiddens = "L1"; //Type of regularization for numeric latent properties
GlobalParams.maxRandom = 0.01; //When generating random numbers for initialization, this is the maximum value
}
public void createTrainTestForCV(int fold){
List<String> user_ids = Arrays.asList(users.keySet().toArray(new String[users.keySet().size()]));
train = new ArrayList<String>();
test = new ArrayList<String>();
int numUsersInTest = user_ids.size() / GlobalParams.numFolds;
double index = 0;
for(String user_id : user_ids){
if(index < fold * numUsersInTest || index > (fold + 1) * numUsersInTest)
train.add(user_id);
else{
test.add(user_id);
}
index++;
}
}
public void readFile() throws FileNotFoundException{
BufferedReader br = new BufferedReader(new FileReader(new File("datasets/ml-1m/users.dat")));
for(String nextLine : br.lines().toArray(String[]::new)){
String[] line = nextLine.split("::");
User user = new User(line[0]);
user.gender = line[1];
user.age = line[2];
user.occupation = line[3];
users.put(line[0], user);
}
br = new BufferedReader(new FileReader(new File("datasets/ml-1m/movies.dat")));
for(String nextLine : br.lines().toArray(String[]::new)){
String[] line = nextLine.split("::");
Movie movie = new Movie(line[0]);
for(String genre : line[2].split(",")){
movie.genre.put(genre, "true");
}
movies.put(line[0], movie);
}
br = new BufferedReader(new FileReader(new File("datasets/ml-1m/ratings.dat")));
for(String nextLine : br.lines().toArray(String[]::new)){
String[] line = nextLine.split("::");
users.get(line[0]).moviesRated.put(line[1], "yes");
users.get(line[0]).moviesRatedVector.addElement(line[1]);
movies.get(line[1]).ratedBy.put(line[0], "yes");
}
}
public void learnModel(){
//This version has two numeric latent properties and one hidden layer. The final version used in the paper has two hidden layers.
HashMap<String, HashMap<String, String>> data = new HashMap<String, HashMap<String, String>>();
String targetPRV = "Gender";
String targetValue = "M";
String[] genres = {"Action", "Drama"};
String[] occupations = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20"};
String[] ages = {"1", "18", "25", "35", "45", "50", "56"};
String[] rates = {"yes"};
for(String genre : genres){
data.put(genre, new HashMap<String, String>());
}
data.put("Age", new HashMap<String, String>());
data.put("Gender", new HashMap<String, String>());
data.put("Occupation", new HashMap<String, String>());
data.put("Rate", new HashMap<String, String>());
data.put("RatePrime", new HashMap<String, String>());
data.put("FeatSim", new HashMap<String, String>());
for(String movie_id : movies.keySet()){
for(String genre : genres){
data.get(genre).put(movie_id, movies.get(movie_id).genre.getOrDefault(genre, "false"));
}
}
for(String key : this.similar.keySet()){
data.get("FeatSim").put(key, this.similar.get(key));
}
double probTargetClass = 0.0;
for(String user_id : train){
if(users.get(user_id).gender.equals(targetValue))
probTargetClass++;
data.get("Age").put(user_id, users.get(user_id).age);
data.get("Gender").put(user_id, users.get(user_id).gender);
data.get("Occupation").put(user_id, users.get(user_id).occupation);
for(String movie_id : users.get(user_id).moviesRated.keySet()){
data.get("Rate").put(user_id + "," + movie_id, users.get(user_id).moviesRated.get(movie_id));
data.get("RatePrime").put(user_id + "," + movie_id, users.get(user_id).moviesRated.get(movie_id));
}
}
probTargetClass /= train.size();
Set<String> movie_ids = movies.keySet();
Set<String> user_ids = users.keySet();
LogVar m = new LogVar("m", movie_ids.toArray(new String[movie_ids.size()]), "movie");
LogVar m_prime = new LogVar("m_prime", movie_ids.toArray(new String[movie_ids.size()]), "movie");
LogVar p = new LogVar("p", user_ids.toArray(new String[user_ids.size()]), "people");
PRV rate = new PRV("Rate", new LogVar[]{p, m}, "observed_input");
PRV rate_prime = new PRV("RatePrime", new LogVar[]{p, m_prime}, "observed_input");
PRV[] genre_prvs = new PRV[genres.length];
for(int i = 0; i < genre_prvs.length; i++)
genre_prvs[i] = new PRV(genres[i], new LogVar[]{m}, "observed_input");
PRV gender = new PRV("Gender", new LogVar[]{p}, "observed_input");
PRV age = new PRV("Age", new LogVar[]{p}, "observed_input");
PRV occupation = new PRV("Occupation", new LogVar[]{p}, "observed_input");
PRV feat1_m = new PRV("Feat1_m", new LogVar[]{m}, "unobserved_input");
data.put("Feat1_m", feat1_m.randomValues());
PRV feat2_m = new PRV("Feat2_m", new LogVar[]{m}, "unobserved_input");
data.put("Feat2_m", feat2_m.randomValues());
PRV[][] rates_genres_prvs = new PRV[rates.length][genres.length];
PRV[] hidden_input1_prvs = new PRV[rates.length];
PRV[] hidden_input2_prvs = new PRV[rates.length];
for(int i = 0; i < rates.length; i++){
for(int j = 0; j < genres.length; j++){
rates_genres_prvs[i][j] = new PRV("H" + i + "_" + j, new LogVar[]{p}, "hidden");
}
hidden_input1_prvs[i] = new PRV("HI1_" + i, new LogVar[]{p}, "hidden");
hidden_input2_prvs[i] = new PRV("HI2_" + i, new LogVar[]{p}, "hidden");
}
WeightedFormula base = new WeightedFormula(new Literal[]{}, 1);
WeightedFormula[][] rates_genres_wfs = new WeightedFormula[rates.length][genres.length];
WeightedFormula[] hidden_input1_wfs = new WeightedFormula[rates.length];
WeightedFormula[] hidden_input2_wfs = new WeightedFormula[rates.length];
WeightedFormula[][] hidden_layer1_rates_genres_wfs = new WeightedFormula[rates.length][genres.length];
WeightedFormula[] hidden_layer1_hidden_input1_wfs = new WeightedFormula[rates.length];
WeightedFormula[] hidden_layer1_hidden_input2_wfs = new WeightedFormula[rates.length];
for(int i = 0; i < rates.length; i++){
for(int j = 0; j < genres.length; j++){
rates_genres_wfs[i][j] = new WeightedFormula(new Literal[]{rate.lit(rates[i]), genre_prvs[j].lit("true")}, 1);
hidden_layer1_rates_genres_wfs[i][j] = new WeightedFormula(new Literal[]{rates_genres_prvs[i][j].lit("NA!")}, 1);
}
hidden_input1_wfs[i] = new WeightedFormula(new Literal[]{rate.lit(rates[i]), feat1_m.lit("NA!")}, 1);
hidden_input2_wfs[i] = new WeightedFormula(new Literal[]{rate.lit(rates[i]), feat2_m.lit("NA!")}, 1);
hidden_layer1_hidden_input1_wfs[i] = new WeightedFormula(new Literal[]{hidden_input1_prvs[i].lit("NA!")}, 1);
hidden_layer1_hidden_input2_wfs[i] = new WeightedFormula(new Literal[]{hidden_input2_prvs[i].lit("NA!")}, 1);
}
WeightedFormula[] occupation_wfs = new WeightedFormula[occupations.length];
for(int i = 0; i < occupation_wfs.length; i++){
occupation_wfs[i] = new WeightedFormula(new Literal[]{occupation.lit(occupations[i])}, 1);
}
WeightedFormula[] age_wfs = new WeightedFormula[ages.length];
for(int i = 0; i < age_wfs.length; i++){
age_wfs[i] = new WeightedFormula(new Literal[]{age.lit(ages[i])}, 1);
}
RelNeuron[][] rates_genres_rns = new RelNeuron[rates.length][genres.length];
for(int i = 0; i < rates.length; i++){
for(int j = 0; j < genres.length; j++){
rates_genres_rns[i][j] = new RelNeuron(rates_genres_prvs[i][j], new WeightedFormula[]{rates_genres_wfs[i][j], base});
}
}
RelNeuron[] hidden_input1_rns = new RelNeuron[rates.length];
for(int i = 0; i < rates.length; i++){
hidden_input1_rns[i] = new RelNeuron(hidden_input1_prvs[i], new WeightedFormula[]{hidden_input1_wfs[i], base});
}
RelNeuron[] hidden_input2_rns = new RelNeuron[rates.length];
for(int i = 0; i < rates.length; i++){
hidden_input2_rns[i] = new RelNeuron(hidden_input2_prvs[i], new WeightedFormula[]{hidden_input2_wfs[i], base});
}
int num_hidden_inputs = 2;
WeightedFormula[] gender_wfs = new WeightedFormula[1 + occupation_wfs.length + age_wfs.length + rates.length * genres.length + num_hidden_inputs * rates.length];
int index = 0;
gender_wfs[index++] = new WeightedFormula(base);
for(int i = 0; i < occupation_wfs.length; i++)
gender_wfs[index++] = occupation_wfs[i];
for(int i = 0; i < age_wfs.length; i++)
gender_wfs[index++] = age_wfs[i];
for(int i = 0; i < rates.length; i++)
for(int j = 0; j < genres.length; j++)
gender_wfs[index++] = hidden_layer1_rates_genres_wfs[i][j];
for(int i = 0; i < hidden_input1_wfs.length; i++)
gender_wfs[index++] = hidden_layer1_hidden_input1_wfs[i];
for(int i = 0; i < hidden_input2_wfs.length; i++)
gender_wfs[index++] = hidden_layer1_hidden_input2_wfs[i];
RelNeuron gender_rn = new RelNeuron(gender, gender_wfs);
RelNeuron[] layer1_rns = new RelNeuron[rates.length * genres.length + num_hidden_inputs * rates.length];
index = 0;
for(int i = 0; i < rates.length; i++)
for(int j = 0; j < genres.length; j++)
layer1_rns[index++] = rates_genres_rns[i][j];
for(int i = 0; i < rates.length; i++)
layer1_rns[index++] = hidden_input1_rns[i];
for(int i = 0; i < rates.length; i++)
layer1_rns[index++] = hidden_input2_rns[i];
Layer linear_layer1 = new LinearLayer(layer1_rns);
Layer sig_layer1 = new SigmoidLayer();
Layer linear_layer2 = new LinearLayer(new RelNeuron[]{gender_rn});
Layer sig_layer2 = new SigmoidLayer();
Layer sum_sqr_error_layer = new SumSquaredErrorLayer(targetValue);
RNN rnn = new RNN(new Layer[]{linear_layer1, sig_layer1, linear_layer2, sig_layer2, sum_sqr_error_layer});
double train_error = rnn.train(data, data.get(targetPRV));
System.out.println("The final error on train data: " + train_error);
//calculating the performance on train data
System.out.println("Performance on train data");
HashMap<String, String> predictions = rnn.test(data).get(targetPRV);
Measures measures = new Measures(data.get(targetPRV), predictions, targetValue);
System.out.println("Accuracy: " + measures.accuracy(0.5));
System.out.println("MAE: " + measures.MAE());
System.out.println("MSE: " + measures.MSE());
System.out.println("ACLL: " + measures.ACLL());
//calculating the performance on test data
GlobalParams.learningStatus = "test";
System.out.println("Performance on test data");
predictions = new HashMap<String, String>();
HashMap<String, String> targets = new HashMap<String, String>();
//Adding n user in each run
System.out.println(test.size());
for(int i = 0; i < test.size(); i += GlobalParams.testBatch){
for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
targets.put(test.get(j), users.get(test.get(j)).gender);
}
for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
data.get("Gender").put(test.get(j), users.get(test.get(j)).gender);
data.get("Age").put(test.get(j), users.get(test.get(j)).age);
data.get("Occupation").put(test.get(j), users.get(test.get(j)).occupation);
for(String movie_id : users.get(test.get(j)).moviesRated.keySet()){
data.get("Rate").put(test.get(j) + "," + movie_id, users.get(test.get(j)).moviesRated.get(movie_id));
}
}
HashMap<String, String> rnn_preds = rnn.test(data).get(targetPRV);
for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
double userPred = Double.parseDouble(rnn_preds.get(test.get(j)));
userPred = GlobalParams.lambdaForMean * userPred + (1 - GlobalParams.lambdaForMean) * probTargetClass;
predictions.put(test.get(j), "" + userPred);
}
for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
data.get("Gender").remove(test.get(j));
data.get("Age").remove(test.get(j));
data.get("Occupation").remove(test.get(j));
for(String movie_id : users.get(test.get(j)).moviesRated.keySet()){
data.get("Rate").remove(test.get(j) + "," + movie_id);
}
}
}
measures = new Measures(targets, predictions, targetValue);
System.out.println("Accuracy with 0.5 boundary: " + measures.accuracy(0.5));
System.out.println("MAE: " + measures.MAE());
System.out.println("MSE: " + measures.MSE());
System.out.println("ACLL: " + measures.ACLL());
// This part of the code was used for the experiment on extrapolating to unseen cases and addressing the population size issue
// int[] Qs = {75, 100};
// int[] Qs = {0, 1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250, 300, 400, 500};
// for(int q = 0; q < Qs.length; q++){
// predictions = new HashMap<String, String>();
// targets = new HashMap<String, String>();
// for(int i = 0; i < test.size(); i += GlobalParams.testBatch){
// for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
// targets.put(test.get(j), users.get(test.get(j)).gender);
// }
// for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
// data.get("Gender").put(test.get(j), users.get(test.get(j)).gender);
// data.get("Age").put(test.get(j), users.get(test.get(j)).age);
// data.get("Occupation").put(test.get(j), users.get(test.get(j)).occupation);
// for(int k = 0; k < Qs[q] && k < users.get(test.get(j)).moviesRatedVector.size(); k++){
// String movie_id = users.get(test.get(j)).moviesRatedVector.elementAt(k);
// data.get("Rate").put(test.get(j) + "," + movie_id, "yes");
// }
// // for(String movie_id : users.get(test.get(j)).moviesRated.keySet()){
// // data.get("Rate").put(test.get(j) + "," + movie_id, users.get(test.get(j)).moviesRated.get(movie_id));
// // }
// }
//
// HashMap<String, String> rnn_preds = rnn.test(data).get(targetPRV);
// for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
// double userPred = Double.parseDouble(rnn_preds.get(test.get(j)));
// userPred = GlobalParams.lambdaForMean * userPred + (1 - GlobalParams.lambdaForMean) * 0.71;
// predictions.put(test.get(j), "" + userPred);
// }
//
// for(int j = i; j < i + GlobalParams.testBatch && j < test.size(); j++){
// data.get("Gender").remove(test.get(j));
// data.get("Age").remove(test.get(j));
// data.get("Occupation").remove(test.get(j));
// for(int k = 0; k < Qs[q] && k < users.get(test.get(j)).moviesRatedVector.size(); k++){
// String movie_id = users.get(test.get(j)).moviesRatedVector.elementAt(k);
// data.get("Rate").remove(test.get(j) + "," + movie_id);
// }
// // for(String movie_id : users.get(test.get(j)).moviesRated.keySet()){
// // data.get("Rate").remove(test.get(j) + "," + movie_id);
// // }
// }
// }
// System.out.println("Q = " + Qs[q]);
// measures = new Measures(targets, predictions, targetValue);
// System.out.println("Accuracy with 0.5 boundary: " + measures.accuracy(0.5));
// System.out.println("MSE: " + measures.MSE());
// System.out.println("ACLL: " + measures.ACLL());
// }
}
public static void main(String[] args) throws FileNotFoundException {
System.out.println("MovieLensGenderLarge");
for(int i = 0; i < GlobalParams.numRuns; i++){
MovieLensGender mlg = new MovieLensGender();
mlg.setHyperParams();
mlg.readFile();
mlg.createTrainTestForCV(0);
mlg.learnModel();
}
}
}
class User {
String id;
String age;
String gender;
String occupation;
HashMap<String, String> moviesRated;
Vector<String> moviesRatedVector;
public User(String id){
this.id = id;
moviesRated = new HashMap<String, String>();
moviesRatedVector = new Vector<String>();
}
}
class Movie {
String id;
HashMap<String, String> genre;
HashMap<String, String> ratedBy;
public Movie(String id){
this.id = id;
ratedBy = new HashMap<String, String>();
genre = new HashMap<String, String>();
}
}