-
Notifications
You must be signed in to change notification settings - Fork 121
/
fmtlog.h
826 lines (718 loc) · 28.9 KB
/
fmtlog.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
/*
MIT License
Copyright (c) 2021 Meng Rao <raomeng1@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#pragma once
//#define FMT_HEADER_ONLY
#include "fmt/format.h"
#include <type_traits>
#include <vector>
#include <chrono>
#include <atomic>
#include <thread>
#include <memory>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef _WIN32
#define FAST_THREAD_LOCAL thread_local
#else
#define FAST_THREAD_LOCAL __thread
#endif
// define FMTLOG_BLOCK=1 if log statment should be blocked when queue is full, instead of discarding the msg
#ifndef FMTLOG_BLOCK
#define FMTLOG_BLOCK 0
#endif
#define FMTLOG_LEVEL_DBG 0
#define FMTLOG_LEVEL_INF 1
#define FMTLOG_LEVEL_WRN 2
#define FMTLOG_LEVEL_ERR 3
#define FMTLOG_LEVEL_OFF 4
// define FMTLOG_ACTIVE_LEVEL to turn off low log level in compile time
#ifndef FMTLOG_ACTIVE_LEVEL
#define FMTLOG_ACTIVE_LEVEL FMTLOG_LEVEL_DBG
#endif
#ifndef FMTLOG_QUEUE_SIZE
#define FMTLOG_QUEUE_SIZE (1 << 20)
#endif
namespace fmtlogdetail {
template<typename Arg>
struct UnrefPtr : std::false_type
{ using type = Arg; };
template<>
struct UnrefPtr<char*> : std::false_type
{ using type = char*; };
template<>
struct UnrefPtr<void*> : std::false_type
{ using type = void*; };
template<typename Arg>
struct UnrefPtr<std::shared_ptr<Arg>> : std::true_type
{ using type = Arg; };
template<typename Arg, typename D>
struct UnrefPtr<std::unique_ptr<Arg, D>> : std::true_type
{ using type = Arg; };
template<typename Arg>
struct UnrefPtr<Arg*> : std::true_type
{ using type = Arg; };
}; // namespace fmtlogdetail
template<int __ = 0>
class fmtlogT
{
public:
enum LogLevel : uint8_t
{
DBG = 0,
INF,
WRN,
ERR,
OFF
};
// Preallocate thread queue for current thread
static void preallocate() noexcept;
// Set the file for logging
static void setLogFile(const char* filename, bool truncate = false);
// Set an existing FILE* for logging, if manageFp is false fmtlog will not buffer log internally
// and will not close the FILE*
static void setLogFile(FILE* fp, bool manageFp = false);
// Collect log msgs from all threads and write to log file
// If forceFlush = true, internal file buffer is flushed
// User need to call poll() repeatedly if startPollingThread is not used
static void poll(bool forceFlush = false);
// Set flush delay in nanosecond
// If there's msg older than ns in the buffer, flush will be triggered
static void setFlushDelay(int64_t ns) noexcept;
// If current msg has level >= flushLogLevel, flush will be triggered
static void flushOn(LogLevel flushLogLevel) noexcept;
// If file buffer has more than specified bytes, flush will be triggered
static void setFlushBufSize(uint32_t bytes) noexcept;
// callback signature user can register
// ns: nanosecond timestamp
// level: logLevel
// location: full file path with line num, e.g: /home/raomeng/fmtlog/fmtlog.h:45
// basePos: file base index in the location
// threadName: thread id or the name user set with setThreadName
// msg: full log msg with header
// bodyPos: log body index in the msg
// logFilePos: log file position of this msg
typedef void (*LogCBFn)(int64_t ns, LogLevel level, fmt::string_view location, size_t basePos,
fmt::string_view threadName, fmt::string_view msg, size_t bodyPos,
size_t logFilePos);
// Set a callback function for all log msgs with a mininum log level
static void setLogCB(LogCBFn cb, LogLevel minCBLogLevel) noexcept;
typedef void (*LogQFullCBFn)(void* userData);
static void setLogQFullCB(LogQFullCBFn cb, void* userData) noexcept;
// Close the log file and subsequent msgs will not be written into the file,
// but callback function can still be used
static void closeLogFile() noexcept;
// Set log header pattern with fmt named arguments
static void setHeaderPattern(const char* pattern);
// Set a name for current thread, it'll be shown in {t} part in header pattern
static void setThreadName(const char* name) noexcept;
// Set current log level, lower level log msgs will be discarded
static inline void setLogLevel(LogLevel logLevel) noexcept;
// Get current log level
static inline LogLevel getLogLevel() noexcept;
// return true if passed log level is not lower than current log level
static inline bool checkLogLevel(LogLevel logLevel) noexcept;
// Run a polling thread in the background with a polling interval in ns
// Note that user must not call poll() himself when the thread is running
static void startPollingThread(int64_t pollInterval = 1000000000) noexcept;
// Stop the polling thread
static void stopPollingThread() noexcept;
// https://github.com/MengRao/SPSC_Queue
class SPSCVarQueueOPT
{
public:
struct MsgHeader
{
inline void push(uint32_t sz) { *(volatile uint32_t*)&size = sz + sizeof(MsgHeader); }
uint32_t size;
uint32_t logId;
};
static constexpr uint32_t BLK_CNT = FMTLOG_QUEUE_SIZE / sizeof(MsgHeader);
MsgHeader* allocMsg(uint32_t size) noexcept;
MsgHeader* alloc(uint32_t size) {
size += sizeof(MsgHeader);
uint32_t blk_sz = (size + sizeof(MsgHeader) - 1) / sizeof(MsgHeader);
if (blk_sz >= free_write_cnt) {
uint32_t read_idx_cache = *(volatile uint32_t*)&read_idx;
if (read_idx_cache <= write_idx) {
free_write_cnt = BLK_CNT - write_idx;
if (blk_sz >= free_write_cnt && read_idx_cache != 0) { // wrap around
blk[0].size = 0;
blk[write_idx].size = 1;
write_idx = 0;
free_write_cnt = read_idx_cache;
}
}
else {
free_write_cnt = read_idx_cache - write_idx;
}
if (free_write_cnt <= blk_sz) {
return nullptr;
}
}
MsgHeader* ret = &blk[write_idx];
write_idx += blk_sz;
free_write_cnt -= blk_sz;
blk[write_idx].size = 0;
return ret;
}
inline const MsgHeader* front() {
uint32_t size = blk[read_idx].size;
if (size == 1) { // wrap around
read_idx = 0;
size = blk[0].size;
}
if (size == 0) return nullptr;
return &blk[read_idx];
}
inline void pop() {
uint32_t blk_sz = (blk[read_idx].size + sizeof(MsgHeader) - 1) / sizeof(MsgHeader);
*(volatile uint32_t*)&read_idx = read_idx + blk_sz;
}
private:
alignas(64) MsgHeader blk[BLK_CNT] = {};
uint32_t write_idx = 0;
uint32_t free_write_cnt = BLK_CNT;
alignas(128) uint32_t read_idx = 0;
};
struct ThreadBuffer
{
SPSCVarQueueOPT varq;
bool shouldDeallocate = false;
char name[32];
size_t nameSize;
};
// https://github.com/MengRao/tscns
class TSCNS
{
public:
static const int64_t NsPerSec = 1000000000;
void init(int64_t init_calibrate_ns = 20000000, int64_t calibrate_interval_ns = 3 * NsPerSec) {
calibate_interval_ns_ = calibrate_interval_ns;
int64_t base_tsc, base_ns;
syncTime(base_tsc, base_ns);
int64_t expire_ns = base_ns + init_calibrate_ns;
while (rdsysns() < expire_ns) std::this_thread::yield();
int64_t delayed_tsc, delayed_ns;
syncTime(delayed_tsc, delayed_ns);
double init_ns_per_tsc = (double)(delayed_ns - base_ns) / (delayed_tsc - base_tsc);
saveParam(base_tsc, base_ns, base_ns, init_ns_per_tsc);
}
void calibrate() {
if (rdtsc() < next_calibrate_tsc_) return;
int64_t tsc, ns;
syncTime(tsc, ns);
int64_t calulated_ns = tsc2ns(tsc);
int64_t ns_err = calulated_ns - ns;
int64_t expected_err_at_next_calibration =
ns_err + (ns_err - base_ns_err_) * calibate_interval_ns_ / (ns - base_ns_ + base_ns_err_);
double new_ns_per_tsc =
ns_per_tsc_ * (1.0 - (double)expected_err_at_next_calibration / calibate_interval_ns_);
saveParam(tsc, calulated_ns, ns, new_ns_per_tsc);
}
static inline int64_t rdtsc() {
#ifdef _MSC_VER
return __rdtsc();
#elif defined(__i386__) || defined(__x86_64__) || defined(__amd64__)
return __builtin_ia32_rdtsc();
#else
return rdsysns();
#endif
}
inline int64_t tsc2ns(int64_t tsc) const {
while (true) {
uint32_t before_seq = param_seq_.load(std::memory_order_acquire) & ~1;
std::atomic_signal_fence(std::memory_order_acq_rel);
int64_t ns = base_ns_ + (int64_t)((tsc - base_tsc_) * ns_per_tsc_);
std::atomic_signal_fence(std::memory_order_acq_rel);
uint32_t after_seq = param_seq_.load(std::memory_order_acquire);
if (before_seq == after_seq) return ns;
}
}
inline int64_t rdns() const { return tsc2ns(rdtsc()); }
static inline int64_t rdsysns() {
using namespace std::chrono;
return duration_cast<nanoseconds>(system_clock::now().time_since_epoch()).count();
}
double getTscGhz() const { return 1.0 / ns_per_tsc_; }
// Linux kernel sync time by finding the first trial with tsc diff < 50000
// We try several times and return the one with the mininum tsc diff.
// Note that MSVC has a 100ns resolution clock, so we need to combine those ns with the same
// value, and drop the first and the last value as they may not scan a full 100ns range
static void syncTime(int64_t& tsc_out, int64_t& ns_out) {
#ifdef _MSC_VER
const int N = 15;
#else
const int N = 3;
#endif
int64_t tsc[N + 1];
int64_t ns[N + 1];
tsc[0] = rdtsc();
for (int i = 1; i <= N; i++) {
ns[i] = rdsysns();
tsc[i] = rdtsc();
}
#ifdef _MSC_VER
int j = 1;
for (int i = 2; i <= N; i++) {
if (ns[i] == ns[i - 1]) continue;
tsc[j - 1] = tsc[i - 1];
ns[j++] = ns[i];
}
j--;
#else
int j = N + 1;
#endif
int best = 1;
for (int i = 2; i < j; i++) {
if (tsc[i] - tsc[i - 1] < tsc[best] - tsc[best - 1]) best = i;
}
tsc_out = (tsc[best] + tsc[best - 1]) >> 1;
ns_out = ns[best];
}
void saveParam(int64_t base_tsc, int64_t base_ns, int64_t sys_ns, double new_ns_per_tsc) {
base_ns_err_ = base_ns - sys_ns;
next_calibrate_tsc_ = base_tsc + (int64_t)((calibate_interval_ns_ - 1000) / new_ns_per_tsc);
uint32_t seq = param_seq_.load(std::memory_order_relaxed);
param_seq_.store(++seq, std::memory_order_release);
std::atomic_signal_fence(std::memory_order_acq_rel);
base_tsc_ = base_tsc;
base_ns_ = base_ns;
ns_per_tsc_ = new_ns_per_tsc;
std::atomic_signal_fence(std::memory_order_acq_rel);
param_seq_.store(++seq, std::memory_order_release);
}
alignas(64) std::atomic<uint32_t> param_seq_ = 0;
double ns_per_tsc_;
int64_t base_tsc_;
int64_t base_ns_;
int64_t calibate_interval_ns_;
int64_t base_ns_err_;
int64_t next_calibrate_tsc_;
};
void init() {
tscns.init();
currentLogLevel = INF;
}
using Context = fmt::format_context;
using MemoryBuffer = fmt::basic_memory_buffer<char, 10000>;
typedef const char* (*FormatToFn)(fmt::string_view format, const char* data, MemoryBuffer& out,
int& argIdx, std::vector<fmt::basic_format_arg<Context>>& args);
static void registerLogInfo(uint32_t& logId, FormatToFn fn, const char* location, LogLevel level,
fmt::string_view fmtString) noexcept;
static void vformat_to(MemoryBuffer& out, fmt::string_view fmt, fmt::format_args args);
static size_t formatted_size(fmt::string_view fmt, fmt::format_args args);
static void vformat_to(char* out, fmt::string_view fmt, fmt::format_args args);
static typename SPSCVarQueueOPT::MsgHeader* allocMsg(uint32_t size, bool logQFullCB) noexcept;
TSCNS tscns;
volatile LogLevel currentLogLevel;
static FAST_THREAD_LOCAL ThreadBuffer* threadBuffer;
template<typename Arg>
static inline constexpr bool isNamedArg() {
return fmt::detail::is_named_arg<fmt::remove_cvref_t<Arg>>::value;
}
template<typename Arg>
struct unNamedType
{ using type = Arg; };
template<typename Arg>
struct unNamedType<fmt::detail::named_arg<char, Arg>>
{ using type = Arg; };
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
template<typename Arg, size_t N, fmt::detail_exported::fixed_string<char, N> Str>
struct unNamedType<fmt::detail::statically_named_arg<Arg, char, N, Str>>
{ using type = Arg; };
#endif
template<typename Arg>
static inline constexpr bool isCstring() {
return fmt::detail::mapped_type_constant<Arg, Context>::value ==
fmt::detail::type::cstring_type;
}
template<typename Arg>
static inline constexpr bool isString() {
return fmt::detail::mapped_type_constant<Arg, Context>::value == fmt::detail::type::string_type;
}
template<typename Arg>
static inline constexpr bool needCallDtor() {
using ArgType = fmt::remove_cvref_t<Arg>;
if constexpr (isNamedArg<Arg>()) {
return needCallDtor<typename unNamedType<ArgType>::type>();
}
if constexpr (isString<Arg>()) return false;
return !std::is_trivially_destructible<ArgType>::value;
}
template<size_t CstringIdx>
static inline constexpr size_t getArgSizes(size_t* cstringSize) {
return 0;
}
template<size_t CstringIdx, typename Arg, typename... Args>
static inline constexpr size_t getArgSizes(size_t* cstringSize, const Arg& arg,
const Args&... args) {
if constexpr (isNamedArg<Arg>()) {
return getArgSizes<CstringIdx>(cstringSize, arg.value, args...);
}
else if constexpr (isCstring<Arg>()) {
size_t len = strlen(arg) + 1;
cstringSize[CstringIdx] = len;
return len + getArgSizes<CstringIdx + 1>(cstringSize, args...);
}
else if constexpr (isString<Arg>()) {
size_t len = arg.size() + 1;
return len + getArgSizes<CstringIdx>(cstringSize, args...);
}
else {
return sizeof(Arg) + getArgSizes<CstringIdx>(cstringSize, args...);
}
}
template<size_t CstringIdx>
static inline constexpr char* encodeArgs(size_t* cstringSize, char* out) {
return out;
}
template<size_t CstringIdx, typename Arg, typename... Args>
static inline constexpr char* encodeArgs(size_t* cstringSize, char* out, Arg&& arg,
Args&&... args) {
if constexpr (isNamedArg<Arg>()) {
return encodeArgs<CstringIdx>(cstringSize, out, arg.value, std::forward<Args>(args)...);
}
else if constexpr (isCstring<Arg>()) {
memcpy(out, arg, cstringSize[CstringIdx]);
return encodeArgs<CstringIdx + 1>(cstringSize, out + cstringSize[CstringIdx],
std::forward<Args>(args)...);
}
else if constexpr (isString<Arg>()) {
size_t len = arg.size();
memcpy(out, arg.data(), len);
out[len] = 0;
return encodeArgs<CstringIdx>(cstringSize, out + len + 1, std::forward<Args>(args)...);
}
else {
// If Arg has alignment >= 16, gcc could emit aligned move instructions(e.g. movdqa) for
// placement new even if the *out* is misaligned, which would cause segfault. So we use memcpy
// when possible
if constexpr (std::is_trivially_copyable_v<fmt::remove_cvref_t<Arg>>) {
memcpy(out, &arg, sizeof(Arg));
}
else {
new (out) fmt::remove_cvref_t<Arg>(std::forward<Arg>(arg));
}
return encodeArgs<CstringIdx>(cstringSize, out + sizeof(Arg), std::forward<Args>(args)...);
}
}
template<size_t Idx, size_t NamedIdx>
static inline constexpr void storeNamedArgs(fmt::detail::named_arg_info<char>* named_args_store) {
}
template<size_t Idx, size_t NamedIdx, typename Arg, typename... Args>
static inline constexpr void storeNamedArgs(fmt::detail::named_arg_info<char>* named_args_store,
const Arg& arg, const Args&... args) {
if constexpr (isNamedArg<Arg>()) {
named_args_store[NamedIdx] = {arg.name, Idx};
storeNamedArgs<Idx + 1, NamedIdx + 1>(named_args_store, args...);
}
else {
storeNamedArgs<Idx + 1, NamedIdx>(named_args_store, args...);
}
}
template<bool ValueOnly, size_t Idx, size_t DestructIdx>
static inline const char* decodeArgs(const char* in, fmt::basic_format_arg<Context>* args,
const char** destruct_args) {
return in;
}
template<bool ValueOnly, size_t Idx, size_t DestructIdx, typename Arg, typename... Args>
static inline const char* decodeArgs(const char* in, fmt::basic_format_arg<Context>* args,
const char** destruct_args) {
using namespace fmtlogdetail;
using ArgType = fmt::remove_cvref_t<Arg>;
if constexpr (isNamedArg<ArgType>()) {
return decodeArgs<ValueOnly, Idx, DestructIdx, typename unNamedType<ArgType>::type, Args...>(
in, args, destruct_args);
}
else if constexpr (isCstring<Arg>() || isString<Arg>()) {
size_t size = strlen(in);
fmt::string_view v(in, size);
if constexpr (ValueOnly) {
fmt::detail::value<Context>& value_ = *(fmt::detail::value<Context>*)(args + Idx);
value_ = fmt::detail::arg_mapper<Context>().map(v);
}
else {
args[Idx] = fmt::detail::make_arg<Context>(v);
}
return decodeArgs<ValueOnly, Idx + 1, DestructIdx, Args...>(in + size + 1, args,
destruct_args);
}
else {
if constexpr (ValueOnly) {
fmt::detail::value<Context>& value_ = *(fmt::detail::value<Context>*)(args + Idx);
if constexpr (UnrefPtr<ArgType>::value) {
value_ = fmt::detail::arg_mapper<Context>().map(**(ArgType*)in);
}
else {
value_ = fmt::detail::arg_mapper<Context>().map(*(ArgType*)in);
}
}
else {
if constexpr (UnrefPtr<ArgType>::value) {
args[Idx] = fmt::detail::make_arg<Context>(**(ArgType*)in);
}
else {
args[Idx] = fmt::detail::make_arg<Context>(*(ArgType*)in);
}
}
if constexpr (needCallDtor<Arg>()) {
destruct_args[DestructIdx] = in;
return decodeArgs<ValueOnly, Idx + 1, DestructIdx + 1, Args...>(in + sizeof(ArgType), args,
destruct_args);
}
else {
return decodeArgs<ValueOnly, Idx + 1, DestructIdx, Args...>(in + sizeof(ArgType), args,
destruct_args);
}
}
}
template<size_t DestructIdx>
static inline void destructArgs(const char** destruct_args) {}
template<size_t DestructIdx, typename Arg, typename... Args>
static inline void destructArgs(const char** destruct_args) {
using ArgType = fmt::remove_cvref_t<Arg>;
if constexpr (isNamedArg<ArgType>()) {
destructArgs<DestructIdx, typename unNamedType<ArgType>::type, Args...>(destruct_args);
}
else if constexpr (needCallDtor<Arg>()) {
((ArgType*)destruct_args[DestructIdx])->~ArgType();
destructArgs<DestructIdx + 1, Args...>(destruct_args);
}
else {
destructArgs<DestructIdx, Args...>(destruct_args);
}
}
template<typename... Args>
static const char* formatTo(fmt::string_view format, const char* data, MemoryBuffer& out,
int& argIdx, std::vector<fmt::basic_format_arg<Context>>& args) {
constexpr size_t num_args = sizeof...(Args);
constexpr size_t num_dtors = fmt::detail::count<needCallDtor<Args>()...>();
const char* dtor_args[std::max(num_dtors, (size_t)1)];
const char* ret;
if (argIdx < 0) {
argIdx = (int)args.size();
args.resize(argIdx + num_args);
ret = decodeArgs<false, 0, 0, Args...>(data, args.data() + argIdx, dtor_args);
}
else {
ret = decodeArgs<true, 0, 0, Args...>(data, args.data() + argIdx, dtor_args);
}
vformat_to(out, format, fmt::basic_format_args(args.data() + argIdx, num_args));
destructArgs<0, Args...>(dtor_args);
return ret;
}
template<bool Reorder, typename... Args>
static fmt::string_view unNameFormat(fmt::string_view in, uint32_t* reorderIdx,
const Args&... args) {
constexpr size_t num_named_args = fmt::detail::count<isNamedArg<Args>()...>();
if constexpr (num_named_args == 0) {
return in;
}
const char* begin = in.data();
const char* p = begin;
std::unique_ptr<char[]> unnamed_str(new char[in.size() + 1 + num_named_args * 5]);
fmt::detail::named_arg_info<char> named_args[std::max(num_named_args, (size_t)1)];
storeNamedArgs<0, 0>(named_args, args...);
char* out = (char*)unnamed_str.get();
uint8_t arg_idx = 0;
while (true) {
auto c = *p++;
if (!c) {
size_t copy_size = p - begin - 1;
memcpy(out, begin, copy_size);
out += copy_size;
break;
}
if (c != '{') continue;
size_t copy_size = p - begin;
memcpy(out, begin, copy_size);
out += copy_size;
begin = p;
c = *p++;
if (!c) fmt::detail::throw_format_error("invalid format string");
if (fmt::detail::is_name_start(c)) {
while ((fmt::detail::is_name_start(c = *p) || ('0' <= c && c <= '9'))) {
++p;
}
fmt::string_view name(begin, p - begin);
int id = -1;
for (size_t i = 0; i < num_named_args; ++i) {
if (named_args[i].name == name) {
id = named_args[i].id;
break;
}
}
if (id < 0) fmt::detail::throw_format_error("invalid format string");
if constexpr (Reorder) {
reorderIdx[id] = arg_idx++;
}
else {
out = fmt::format_to(out, "{}", id);
}
}
else {
*out++ = c;
}
begin = p;
}
const char* ptr = unnamed_str.release();
return fmt::string_view(ptr, out - ptr);
}
public:
template<typename... Args>
inline void log(
uint32_t& logId, int64_t tsc, const char* location, LogLevel level,
fmt::format_string<typename fmtlogdetail::UnrefPtr<fmt::remove_cvref_t<Args>>::type...> format,
Args&&... args) noexcept {
if (!logId) {
auto unnamed_format = unNameFormat<false>(fmt::string_view(format), nullptr, args...);
registerLogInfo(logId, formatTo<Args...>, location, level, unnamed_format);
}
constexpr size_t num_cstring = fmt::detail::count<isCstring<Args>()...>();
size_t cstringSizes[std::max(num_cstring, (size_t)1)];
uint32_t alloc_size = 8 + (uint32_t)getArgSizes<0>(cstringSizes, args...);
bool q_full_cb = true;
do {
if (auto header = allocMsg(alloc_size, q_full_cb)) {
header->logId = logId;
char* out = (char*)(header + 1);
*(int64_t*)out = tsc;
out += 8;
encodeArgs<0>(cstringSizes, out, std::forward<Args>(args)...);
header->push(alloc_size);
break;
}
q_full_cb = false;
} while (FMTLOG_BLOCK);
}
template<typename... Args>
inline void logOnce(const char* location, LogLevel level, fmt::format_string<Args...> format,
Args&&... args) {
fmt::string_view sv(format);
auto&& fmt_args = fmt::make_format_args(args...);
uint32_t fmt_size = formatted_size(sv, fmt_args);
uint32_t alloc_size = 8 + 8 + fmt_size;
bool q_full_cb = true;
do {
if (auto header = allocMsg(alloc_size, q_full_cb)) {
header->logId = (uint32_t)level;
char* out = (char*)(header + 1);
*(int64_t*)out = tscns.rdtsc();
out += 8;
*(const char**)out = location;
out += 8;
vformat_to(out, sv, fmt_args);
header->push(alloc_size);
break;
}
q_full_cb = false;
} while (FMTLOG_BLOCK);
}
};
using fmtlog = fmtlogT<>;
template<int _>
FAST_THREAD_LOCAL typename fmtlogT<_>::ThreadBuffer* fmtlogT<_>::threadBuffer;
template<int __ = 0>
struct fmtlogWrapper
{ static fmtlog impl; };
template<int _>
fmtlog fmtlogWrapper<_>::impl;
template<int _>
inline void fmtlogT<_>::setLogLevel(LogLevel logLevel) noexcept {
fmtlogWrapper<>::impl.currentLogLevel = logLevel;
}
template<int _>
inline typename fmtlogT<_>::LogLevel fmtlogT<_>::getLogLevel() noexcept {
return fmtlogWrapper<>::impl.currentLogLevel;
}
template<int _>
inline bool fmtlogT<_>::checkLogLevel(LogLevel logLevel) noexcept {
#ifdef FMTLOG_NO_CHECK_LEVEL
return true;
#else
return logLevel >= fmtlogWrapper<>::impl.currentLogLevel;
#endif
}
#define __FMTLOG_S1(x) #x
#define __FMTLOG_S2(x) __FMTLOG_S1(x)
#define __FMTLOG_LOCATION __FILE__ ":" __FMTLOG_S2(__LINE__)
#define FMTLOG(level, format, ...) \
do { \
static uint32_t logId = 0; \
if (!fmtlog::checkLogLevel(level)) break; \
fmtlogWrapper<>::impl.log(logId, fmtlogWrapper<>::impl.tscns.rdtsc(), __FMTLOG_LOCATION, \
level, format, ##__VA_ARGS__); \
} while (0)
#define FMTLOG_LIMIT(min_interval, level, format, ...) \
do { \
static uint32_t logId = 0; \
static int64_t limitNs = 0; \
if (!fmtlog::checkLogLevel(level)) break; \
int64_t tsc = fmtlogWrapper<>::impl.tscns.rdtsc(); \
int64_t ns = fmtlogWrapper<>::impl.tscns.tsc2ns(tsc); \
if (ns < limitNs) break; \
limitNs = ns + min_interval; \
fmtlogWrapper<>::impl.log(logId, tsc, __FMTLOG_LOCATION, level, format, ##__VA_ARGS__); \
} while (0)
#define FMTLOG_ONCE(level, format, ...) \
do { \
if (!fmtlog::checkLogLevel(level)) break; \
fmtlogWrapper<>::impl.logOnce(__FMTLOG_LOCATION, level, format, ##__VA_ARGS__); \
} while (0)
#if FMTLOG_ACTIVE_LEVEL <= FMTLOG_LEVEL_DBG
#define logd(format, ...) FMTLOG(fmtlog::DBG, format, ##__VA_ARGS__)
#define logdo(format, ...) FMTLOG_ONCE(fmtlog::DBG, format, ##__VA_ARGS__)
#define logdl(min_interval, format, ...) FMTLOG_LIMIT(min_interval, fmtlog::DBG, format, ##__VA_ARGS__)
#else
#define logd(format, ...) (void)0
#define logdo(format, ...) (void)0
#define logdl(min_interval, format, ...) (void)0
#endif
#if FMTLOG_ACTIVE_LEVEL <= FMTLOG_LEVEL_INF
#define logi(format, ...) FMTLOG(fmtlog::INF, format, ##__VA_ARGS__)
#define logio(format, ...) FMTLOG_ONCE(fmtlog::INF, format, ##__VA_ARGS__)
#define logil(min_interval, format, ...) FMTLOG_LIMIT(min_interval, fmtlog::INF, format, ##__VA_ARGS__)
#else
#define logi(format, ...) (void)0
#define logio(format, ...) (void)0
#define logil(min_interval, format, ...) (void)0
#endif
#if FMTLOG_ACTIVE_LEVEL <= FMTLOG_LEVEL_WRN
#define logw(format, ...) FMTLOG(fmtlog::WRN, format, ##__VA_ARGS__)
#define logwo(format, ...) FMTLOG_ONCE(fmtlog::WRN, format, ##__VA_ARGS__)
#define logwl(min_interval, format, ...) FMTLOG_LIMIT(min_interval, fmtlog::WRN, format, ##__VA_ARGS__)
#else
#define logw(format, ...) (void)0
#define logwo(format, ...) (void)0
#define logwl(min_interval, format, ...) (void)0
#endif
#if FMTLOG_ACTIVE_LEVEL <= FMTLOG_LEVEL_ERR
#define loge(format, ...) FMTLOG(fmtlog::ERR, format, ##__VA_ARGS__)
#define logeo(format, ...) FMTLOG_ONCE(fmtlog::ERR, format, ##__VA_ARGS__)
#define logel(min_interval, format, ...) FMTLOG_LIMIT(min_interval, fmtlog::ERR, format, ##__VA_ARGS__)
#else
#define loge(format, ...) (void)0
#define logeo(format, ...) (void)0
#define logel(min_interval, format, ...) (void)0
#endif
#ifdef FMTLOG_HEADER_ONLY
#include "fmtlog-inl.h"
#endif