The stCancer
package focuses on processing and analysis spatial transcriptome data for cancer research. Except basic data processing steps, stCancer takes more considerations to spatial information and cancer-specific features.
The workflow of stCancer
mainly consists of two modules: stStatistics
and stAnnotation
.
- The
stStatistics
performs quality control and basic statistical analyses. - The
stAnnotation
performs functional data analyses and visualization of single sample, including low-dimensional representation, clustering, gene expression pattern analysis, copy number variants estimation, ligand-receptor interaction analysis, phenotype heterogeneity analysis, etc.
After all the computational analyses finished, detailed and graphical reports were automatically generated in user-friendly HTML format.
- R version: >= 4.0.0
- stCancer 0.1.0
checkPkg <- function(pkg){
return(requireNamespace(pkg, quietly = TRUE))
}
if(!checkPkg("BiocManager")) install.packages("BiocManager")
if(!checkPkg("devtools")) install.packages("devtools")
library(devtools)
if(!checkPkg("RcppArmadillo")) install.packages("RcppArmadillo")
if(!checkPkg("RcppProgress")) install.packages("RcppProgress")
if(!checkPkg("markdown")) install.packages("markdown")
if(!checkPkg("R.utils")) install.packages("R.utils")
if(!checkPkg("NNLM")) install_github("linxihui/NNLM")
if(!checkPkg("copykat")) install_github("navinlabcode/copykat")
if(!checkPkg("Seurat")) install.packages("Seurat")
if(!checkPkg("knitr")) BiocManager::install("knitr")
if(!checkPkg("GSVA")) BiocManager::install("GSVA")
if(!checkPkg("pheatmap")) BiocManager::install("pheatmap")
if(!checkPkg("ComplexHeatmap")) BiocManager::install("ComplexHeatmap")
if(!checkPkg("ClusterProfiler")) BiocManager::install("ClusterProfiler")
if(!checkPkg("org.Hs.eg.db")) BiocManager::install("org.Hs.eg.db")
if(!checkPkg("org.Mm.eg.db")) BiocManager::install("org.Mm.eg.db")
if(!checkPkg("glmGamPoi")) BiocManager::install('glmGamPoi')
install_github("Miaoyx323/stCancer")
stCancer
takes the output of spaceranger as input and outputs the preliminary analysis results of samples.
library(stCancer)
sample.name <- "ST_data"
data.path <- "Path/to/the/outputs/of/Spaceranger" # including 'filtered_feature_bc_matrix' and 'spatial' folders
save.path <- "the/save/path"
results <- stStatistics(sample.name,
dataPath = data.path,
savePath = save.path,
species = "human")
object <- results$object
results <- stAnnotation(object,
savePath = save.path,
species = "human",
bool.NMF = T,
bool.CellType = T,
bool.CNV = T,
bool.interaction = T,
bool.tumor.feature = T)
object <- results$object
Here, we provide some example data of HCC from Comprehensive analysis of spatial architecture in primary liver cancer.
Please use the following citation:
Chen Z, Miao Y, Tan Z, et al. scCancer2: data-driven in-depth annotations of the tumor microenvironment at single-level resolution[J]. Bioinformatics, 2024, 40(2): btae028.
RUI WU, WENBO GUO, XINYAO QIU,et al. Comprehensive analysis of spatial architecture in primary liver cancer. SCIENCE ADVANCES, 2021. DOI: 10.1126/sciadv.abg3750 https://www.science.org/doi/10.1126/sciadv.abg3750