-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredict.py
123 lines (99 loc) · 5.63 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from src.data.base_dataset import ContiguousVideoClipDataset, DisjointVideoClipDataset
from src.environments.environments import create_eval_environment
from src.models.create_model import create_model
from src.options.options import TestOptions
from src.util.util import makedir, listopt, to_numpy, inverse_transform, fore_transform, as_variable
def main():
# parse test arguments and create directories
opt = TestOptions().parse(allow_unknown=True)
listopt(opt)
# create dataloader
if opt.disjoint_clips:
test_dataset = DisjointVideoClipDataset(opt.c_dim, opt.test_video_list_path, opt.K, opt.F, opt.image_size,
opt.padding_size)
else:
test_dataset = ContiguousVideoClipDataset(opt.c_dim, opt.test_video_list_path, opt.K + opt.T + opt.F, False,
False, opt.image_size, False, opt.padding_size)
test_data_loader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False,
num_workers=opt.num_threads, drop_last=False)
print('# testing videos = %d' % len(test_dataset))
# create model
fill_in_model = create_model(opt.model_key)
env = create_eval_environment(fill_in_model, opt.checkpoints_dir, opt.name, opt.snapshot_file_name,
opt.padding_size)
# initialize progress bar
pbar = tqdm(total=len(test_data_loader))
# evaluate each video
for i, data in enumerate(test_data_loader):
# prepare the ground truth in the form of [batch, t, h, w, c]
all_frames = data['targets']
clip_label = data['clip_label']
# compute the inpainting results
preceding_frames = all_frames[:, :opt.K, :, :, :]
following_frames = all_frames[:, -opt.F:, :, :, :]
env.set_test_inputs(preceding_frames, following_frames)
env.T = opt.T
env.eval()
env.forward_test()
# save frames to disk
pred = env.gen_output['pred'] # B x T x C x H x W
pred_forward = env.gen_output.get('pred_forward')
pred_backward = env.gen_output.get('pred_backward')
interp_net_outputs_1 = env.gen_output.get('interp_net_outputs_1')
interp_net_outputs_2 = env.gen_output.get('interp_net_outputs_2')
for b in xrange(pred.shape[0]):
cur_image_root_path = os.path.join(opt.qual_result_root, clip_label[b])
# Write ground truth frames
save_video_frames(preceding_frames[b, :, :, :opt.image_size[0], :opt.image_size[1]], cur_image_root_path,
'gt_preceding')
save_video_frames(following_frames[b, :, :, :opt.image_size[0], :opt.image_size[1]], cur_image_root_path,
'gt_following', counter_start=opt.K+opt.T)
if not opt.disjoint_clips:
gt_middle_frames = all_frames[:, opt.K:-opt.F, :, :, :]
save_video_frames(gt_middle_frames[b, :, :, :opt.image_size[0], :opt.image_size[1]],
cur_image_root_path, 'gt_middle', counter_start=opt.K)
# Write predicted middle frames
save_video_frames(pred[b, :, :, :opt.image_size[0], :opt.image_size[1]].data, cur_image_root_path,
'pred_middle', counter_start=opt.K)
# Write intermediate predictions
if opt.intermediate_preds:
if pred_forward is not None:
save_video_frames(pred_forward[b, :, :, :opt.image_size[0], :opt.image_size[1]].data,
cur_image_root_path, 'pred_middle_forward', counter_start=opt.K)
if pred_backward is not None:
save_video_frames(pred_backward[b, :, :, :opt.image_size[0], :opt.image_size[1]].data,
cur_image_root_path, 'pred_middle_backward', counter_start=opt.K)
if interp_net_outputs_1 is not None:
save_video_frames(interp_net_outputs_1[b, :, :, :opt.image_size[0], :opt.image_size[1]].data,
cur_image_root_path, 'interp_net_outputs_1', counter_start=opt.K)
if interp_net_outputs_2 is not None:
save_video_frames(interp_net_outputs_2[b, :, :, :opt.image_size[0], :opt.image_size[1]].data,
cur_image_root_path, 'interp_net_outputs_2', counter_start=opt.K)
pbar.update()
pbar.close()
print('Done.')
def save_video_frames(video, image_root_dir, image_name_prefix, counter_start=0):
"""Saves the frames in the given video to a folder.
:param video: T x C x H x W FloatTensor, range in [-1, 1]. If C == 3, input should be in BGR color space
:param image_root_dir: The directory where the video frames should be saved
;param image_name_prefix: The string used to prefix each video frame
:param counter_start: The starting index used to name each video frame
"""
T, C, H, W = video.shape
clipped_video = torch.clamp(video, -1, 1)
makedir(image_root_dir)
for t in xrange(T):
image_path = os.path.join(image_root_dir, '%s_%04d.png' % (image_name_prefix, t + counter_start))
frame_np = to_numpy(clipped_video[t, :, :, :], transpose=(1, 2, 0))
frame_np_uint8 = (255 * inverse_transform(frame_np)).astype(np.uint8)
pil_image = Image.fromarray(frame_np_uint8[:, :, 0] if C == 1 else frame_np_uint8[:, :, ::-1])
pil_image.save(image_path)
if __name__ == '__main__':
main()