Skip to content

Commit

Permalink
Preparing 0.2.0 submission
Browse files Browse the repository at this point in the history
  • Loading branch information
Mikkel Helding Vembye authored and Mikkel Helding Vembye committed Feb 13, 2024
1 parent 7d0d659 commit 828f17d
Show file tree
Hide file tree
Showing 14 changed files with 53 additions and 48 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.1
RoxygenNote: 7.2.3
Imports:
ggplot2,
dplyr,
Expand Down
2 changes: 1 addition & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# POMADE 0.1.0.9999
# POMADE 0.2.0

* Corrected formula for expectation of tau-squared estimator in the CE-RVE model, in accordance with corrigendum.

Expand Down
10 changes: 5 additions & 5 deletions R/data-documentation.R
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
#' Co-teaching Dataset
#' Co-Teaching Dataset
#'
#' Data from a meta-analysis on the effects of collaborative models
#' of instruction on student achievement from Vembye, Weiss, and
#' Bhat (In press/forthcoming).
#' Bhat (2023).
#'
#' @format A tibble with 76 rows/studies and 9 variables
#'\describe{
Expand All @@ -20,10 +20,10 @@
#' @source Find background material on \href{https://osf.io/fby7w/}{Vembye's OSF page},
#' and the preprint at <https://osf.io/preprints/metaarxiv/mq5v7/>.
#'
#' @references Vembye, M. H., Weiss, F., & Bhat, B. H. (In press/forthcoming). The Effects
#' @references Vembye, M. H., Weiss, F., & Bhat, B. H. (2023). The Effects
#' Co-Teaching and Related Collaborative Models of Instruction on
#' Student Achievement: A Systematic Review and Meta-Analysis. \emph{Review of
#' Educational Research}. Access to background material at <https://osf.io/fby7w/>.
#' Educational Research}, \doi{10.3102/00346543231186588}
#'

"VWB22_pilot"
"VWB23_pilot"
2 changes: 1 addition & 1 deletion R/power_MADE.R
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@
#' var_df = c("Model", "Satt", "RVE"),
#' alpha = .05,
#' seed = 10052510,
#' iterations =5
#' iterations = 5
#' )
#'
#' power
Expand Down
31 changes: 14 additions & 17 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ knitr::opts_chunk$set(
[![](http://cranlogs.r-pkg.org/badges/last-month/POMADE)](https://CRAN.R-project.org/package=POMADE)
<!-- badges: end -->

The POMADE package provides functions for conducting power analysis for tests based on the correlated-hierarchical effects (CHE; Pustejovsky & Tipton, 2021), multi-level meta-analysis (MLMA; Van den Noortgate et al., 2013), and correlated-effects (CE; Hedges et al., 2010) models for meta-analysis of dependent effect sizes, with the possibility to vary assumptions about the variance estimation and the estimation of the degrees of freedom. These approximations aim to replace Hedges & Pigott's (2001) previous power approximation based on the assumption of independence between effect sizes, which has been shown to work inadequately to predict power for models that handle dependent effect sizes (Vembye, Pustejovsky, & Pigott, 2022). The package also includes functions for creating graphical displays of power analysis results.
The POMADE package provides functions for conducting power analysis for tests based on the correlated-hierarchical effects (CHE; Pustejovsky & Tipton, 2021), multi-level meta-analysis (MLMA; Van den Noortgate et al., 2013), and correlated-effects (CE; Hedges et al., 2010) models for meta-analysis of dependent effect sizes, with the possibility to vary assumptions about the variance estimation and the estimation of the degrees of freedom. These approximations aim to replace Hedges & Pigott's (2001) previous power approximation based on the assumption of independence between effect sizes, which has been shown to work inadequately to predict power for models that handle dependent effect sizes [(Vembye, Pustejovsky, & Pigott, 2022)](https://osf.io/6tp9y). The package also includes functions for creating graphical displays of power analysis results. Find more detail how to conduct reliable power analyses for meta-analysis in [Vembye, Pustejovsky, & Pigott (2024)](https://osf.io/preprints/metaarxiv/3x2en).

## Installation

Expand Down Expand Up @@ -55,8 +55,8 @@ library(POMADE)
library(dplyr)
# Find more information about this dataset by executing the following command below
# ?VWB22_pilot
coteach_dat <- VWB22_pilot
# ?VWB23_pilot
coteach_dat <- VWB23_pilot
#glimpse(coteach_dat)
dat_kjsigma2j <- select(coteach_dat, kj, sigma2j = vg_ms_mean)
Expand All @@ -78,8 +78,8 @@ power_CHE_RVE_empirical <-
seed = 10052510
)
power_CHE_RVE_empirical %>%
select(J, tau, omega, rho, power, mcse) %>%
power_CHE_RVE_empirical |>
select(J, tau, omega, rho, power, mcse) |>
head(10)
```
Expand All @@ -95,7 +95,6 @@ power_CHE_RVE_plot <-
)
power_CHE_RVE_plot
```

### Minimum detectable effect size (MDES)
Expand All @@ -119,10 +118,9 @@ mdes_CHE_RVE_empirical <-
seed = 10052510
)
mdes_CHE_RVE_empirical %>%
select(J, tau, omega, rho, target_power, MDES) %>%
mdes_CHE_RVE_empirical |>
select(J, tau, omega, rho, target_power, MDES) |>
head(10)
```

The MDES data can then be plotted across plausible scenarios.
Expand Down Expand Up @@ -160,22 +158,20 @@ min_studies_example <-
seed = 10052510,
)
min_studies_example %>%
select(mu, tau, omega, rho, target_power, studies_needed) %>%
min_studies_example |>
select(mu, tau, omega, rho, target_power, studies_needed) |>
head(10)
```

and plotted via

```{r, example3, message=FALSE, warning=FALSE, fig.width=8, fig.height=6}
min_studies_plot <-
min_studies_example %>%
filter(mu == 0.1) %>%
min_studies_example |>
filter(mu == 0.1) |>
plot_MADE()
min_studies_plot
```

Alternatively, reviewers can investigate how the number of studies needed varies across various values of the effect size of practical concern.
Expand All @@ -187,7 +183,6 @@ min_studies_plot2 <-
)
min_studies_plot2
```

### Traffic light power plot
Expand All @@ -201,7 +196,6 @@ plot_MADE(
expected_studies = c(45, 55),
traffic_light_assumptions = c("unlikely", "likely", "expected", "expected", "likely")
)
```

## Parallel processing
Expand Down Expand Up @@ -262,3 +256,6 @@ Pustejovsky, J. E., & Tipton E. (2021). Meta-analysis with robust variance estim
Van den Noortgate, W., López-López, J., Marín-Martínez, F., & Sánchez-Meca, J. (2013). Three-level meta-analysis of dependent effect sizes. *Behavior Research Methods*, 45(2), 576–594. <https://doi.org/10.3758/s13428-012-0261-6>

Vembye, M. H., Pustejovsky, J. E., & Pigott, T. D. (2022). Power approximations for overall average effects in meta-analysis with dependent effect sizes. *Journal of Educational and Behavioral Statistics*, 1–33. <https://doi.org/10.3102/10769986221127379>

Vembye, M. H., Pustejovsky, J. E., & Pigott, T. D. (2024). Conducting Power Analysis for Meta-Analysis of Dependent Effect Sizes: Common Guidelines and an Introduction to the POMADE R package. <https://osf.io/preprints/metaarxiv/3x2en>

36 changes: 22 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,11 @@ degrees of freedom. These approximations aim to replace Hedges &
Pigott’s (2001) previous power approximation based on the assumption of
independence between effect sizes, which has been shown to work
inadequately to predict power for models that handle dependent effect
sizes (Vembye, Pustejovsky, & Pigott, 2022). The package also includes
functions for creating graphical displays of power analysis results.
sizes [(Vembye, Pustejovsky, & Pigott, 2022)](https://osf.io/6tp9y). The
package also includes functions for creating graphical displays of power
analysis results. Find more detail how to conduct reliable power
analyses for meta-analysis in [Vembye, Pustejovsky, & Pigott
(2024)](https://osf.io/preprints/metaarxiv/3x2en).

## Installation

Expand Down Expand Up @@ -58,8 +61,8 @@ library(POMADE)
library(dplyr)

# Find more information about this dataset by executing the following command below
# ?VWB22_pilot
coteach_dat <- VWB22_pilot
# ?VWB23_pilot
coteach_dat <- VWB23_pilot
#glimpse(coteach_dat)

dat_kjsigma2j <- select(coteach_dat, kj, sigma2j = vg_ms_mean)
Expand All @@ -81,8 +84,8 @@ power_CHE_RVE_empirical <-
seed = 10052510
)

power_CHE_RVE_empirical %>%
select(J, tau, omega, rho, power, mcse) %>%
power_CHE_RVE_empirical |>
select(J, tau, omega, rho, power, mcse) |>
head(10)
#> # A tibble: 10 × 6
#> J tau omega rho power mcse
Expand Down Expand Up @@ -138,8 +141,8 @@ mdes_CHE_RVE_empirical <-
seed = 10052510
)

mdes_CHE_RVE_empirical %>%
select(J, tau, omega, rho, target_power, MDES) %>%
mdes_CHE_RVE_empirical |>
select(J, tau, omega, rho, target_power, MDES) |>
head(10)
#> # A tibble: 10 × 6
#> J tau omega rho target_power MDES
Expand Down Expand Up @@ -196,8 +199,8 @@ min_studies_example <-
seed = 10052510,
)

min_studies_example %>%
select(mu, tau, omega, rho, target_power, studies_needed) %>%
min_studies_example |>
select(mu, tau, omega, rho, target_power, studies_needed) |>
head(10)
#> # A tibble: 10 × 6
#> mu tau omega rho target_power studies_needed
Expand All @@ -218,8 +221,8 @@ and plotted via

``` r
min_studies_plot <-
min_studies_example %>%
filter(mu == 0.1) %>%
min_studies_example |>
filter(mu == 0.1) |>
plot_MADE()

min_studies_plot
Expand Down Expand Up @@ -286,7 +289,7 @@ system.time(
)
)
#> user system elapsed
#> 35.40 0.25 35.81
#> 33.38 0.58 34.30

plan(multisession, workers = 2)

Expand All @@ -306,7 +309,7 @@ system.time(
)
)
#> user system elapsed
#> 0.08 0.00 26.84
#> 0.14 0.01 23.07

identical(res_seq, res_par)
#> [1] TRUE
Expand Down Expand Up @@ -336,3 +339,8 @@ Vembye, M. H., Pustejovsky, J. E., & Pigott, T. D. (2022). Power
approximations for overall average effects in meta-analysis with
dependent effect sizes. *Journal of Educational and Behavioral
Statistics*, 1–33. <https://doi.org/10.3102/10769986221127379>

Vembye, M. H., Pustejovsky, J. E., & Pigott, T. D. (2024). Conducting
Power Analysis for Meta-Analysis of Dependent Effect Sizes: Common
Guidelines and an Introduction to the POMADE R package.
<https://osf.io/preprints/metaarxiv/3x2en>
2 changes: 1 addition & 1 deletion _pkgdown.yml
Original file line number Diff line number Diff line change
Expand Up @@ -27,4 +27,4 @@ reference:
- title: "Datasets"
desc: "Example datasets"
contents:
- VWB22_pilot
- VWB23_pilot
Binary file removed data/VWB22_pilot.RData
Binary file not shown.
Binary file added data/VWB23_pilot.rda
Binary file not shown.
14 changes: 7 additions & 7 deletions man/VWB22_pilot.Rd → man/VWB23_pilot.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Binary file modified man/figures/README-example2-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified man/figures/README-example5-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified man/figures/README-example7-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion man/power_MADE.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit 828f17d

Please sign in to comment.