-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathRLagent.py
295 lines (251 loc) · 9.57 KB
/
RLagent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import os
import pandas as pd
import time
import matplotlib.pyplot as plt
import seaborn as sns
import random
from visualization import plot_trading_result
sns.set()
class Deep_Evolution_Strategy:
"""
深度进化策略类
参数:
weights: 模型权重
reward_function: 奖励函数
population_size: 种群大小
sigma: 扰动标准差
learning_rate: 学习率
"""
def __init__(self, weights, reward_function, population_size, sigma, learning_rate):
self.weights = weights
self.reward_function = reward_function
self.population_size = population_size
self.sigma = sigma
self.learning_rate = learning_rate
def _get_weight_from_population(self, weights, population):
"""生成扰动后的权重"""
weights_population = []
for index, i in enumerate(population):
jittered = self.sigma * i
weights_population.append(weights[index] + jittered)
return weights_population
def get_weights(self):
"""获取当前权重"""
return self.weights
def train(self, epoch=100, print_every=1):
"""
训练模型
参数:
epoch: 训练轮数
print_every: 打印频率
"""
lasttime = time.time()
for i in range(epoch):
population = []
rewards = np.zeros(self.population_size)
# 生成种群
for k in range(self.population_size):
x = []
for w in self.weights:
x.append(np.random.randn(*w.shape))
population.append(x)
# 计算每个个体的奖励
for k in range(self.population_size):
weights_population = self._get_weight_from_population(self.weights, population[k])
rewards[k] = self.reward_function(weights_population)
# 标准化奖励
rewards = (rewards - np.mean(rewards)) / (np.std(rewards) + 1e-7)
# 更新权重
for index, w in enumerate(self.weights):
A = np.array([p[index] for p in population])
self.weights[index] = (
w
+ self.learning_rate
/ (self.population_size * self.sigma)
* np.dot(A.T, rewards).T
)
if (i + 1) % print_every == 0:
print('iter %d. reward: %f' % (i + 1, self.reward_function(self.weights)))
print('time taken to train:', time.time() - lasttime, 'seconds')
class Model:
"""
神经网络模型类
参数:
input_size: 输入维度
layer_size: 隐藏层大小
output_size: 输出维度
"""
def __init__(self, input_size, layer_size, output_size):
self.weights = [
np.random.randn(input_size, layer_size),
np.random.randn(layer_size, output_size),
np.random.randn(1, layer_size),
]
def predict(self, inputs):
"""预测函数"""
feed = np.dot(inputs, self.weights[0]) + self.weights[-1]
decision = np.dot(feed, self.weights[1])
return decision
def get_weights(self):
"""获取模型权重"""
return self.weights
def set_weights(self, weights):
"""设置模型权重"""
self.weights = weights
class Agent:
"""
交易代理类
参数:
model: 预测模型
window_size: 时间窗口大小
trend: 价格序列
skip: 跳过步数
initial_money: 初始资金
ticker: 股票代码
"""
POPULATION_SIZE = 15
SIGMA = 0.1
LEARNING_RATE = 0.03
def __init__(self, model, window_size, trend, skip, initial_money, ticker, save_dir):
self.model = model
self.window_size = window_size
self.half_window = window_size // 2
self.trend = trend
self.skip = skip
self.initial_money = initial_money
self.ticker = ticker
self.save_dir = save_dir
self.es = Deep_Evolution_Strategy(
self.model.get_weights(),
self.get_reward,
self.POPULATION_SIZE,
self.SIGMA,
self.LEARNING_RATE,
)
def act(self, sequence):
"""根据当前状态选择行动"""
decision = self.model.predict(np.array(sequence))
return np.argmax(decision[0])
def get_state(self, t):
"""获取当前状态"""
window_size = self.window_size + 1
d = t - window_size + 1
block = self.trend[d: t + 1] if d >= 0 else -d * [self.trend[0]] + self.trend[0: t + 1]
res = []
for i in range(window_size - 1):
res.append(block[i + 1] - block[i])
return np.array([res])
def get_reward(self, weights):
"""计算奖励值"""
initial_money = self.initial_money
starting_money = initial_money
self.model.weights = weights
state = self.get_state(0)
inventory = []
for t in range(0, len(self.trend) - 1, self.skip):
action = self.act(state)
next_state = self.get_state(t + 1)
if action == 1 and starting_money >= self.trend[t]:
inventory.append(self.trend[t])
starting_money -= self.trend[t]
elif action == 2 and len(inventory):
bought_price = inventory.pop(0)
starting_money += self.trend[t]
state = next_state
return ((starting_money - initial_money) / initial_money) * 100
def fit(self, iterations, checkpoint):
"""训练代理"""
self.es.train(iterations, print_every=checkpoint)
def buy(self, save_dir):
"""执行交易策略"""
initial_money = self.initial_money
state = self.get_state(0)
starting_money = initial_money
states_sell = []
states_buy = []
inventory = []
transaction_history = []
for t in range(0, len(self.trend) - 1, self.skip):
action = self.act(state)
next_state = self.get_state(t + 1)
if action == 1 and initial_money >= self.trend[t]:
inventory.append(self.trend[t])
initial_money -= self.trend[t]
states_buy.append(t)
transaction_history.append({
'day': t,
'operate': 'buy',
'price': self.trend[t],
'investment': 0,
'total_balance': initial_money
})
elif action == 2 and len(inventory):
bought_price = inventory.pop(0)
initial_money += self.trend[t]
states_sell.append(t)
try:
invest = ((self.trend[t] - bought_price) / bought_price) * 100
except:
invest = 0
transaction_history.append({
'day': t,
'operate': 'sell',
'price': self.trend[t],
'investment': invest,
'total_balance': initial_money
})
state = next_state
# 保存交易历史
df_transaction = pd.DataFrame(transaction_history)
os.makedirs(f'{save_dir}/transactions', exist_ok=True)
df_transaction.to_csv(f'{save_dir}/transactions/{self.ticker}_transactions.csv', index=False)
invest = ((initial_money - starting_money) / starting_money) * 100
total_gains = initial_money - starting_money
return states_buy, states_sell, total_gains, invest
def process_stock(ticker, save_dir, window_size = 30, initial_money = 10000, iterations=500):
try:
# 读取预测数据
df = pd.read_pickle(f'{save_dir}/predictions/{ticker}_predictions.pkl')
print(f"\nProcessing {ticker}")
close = df.Prediction.values.tolist()
# 设置参数
window_size = window_size
skip = 1
initial_money = initial_money
# 创建模型和代理
model = Model(input_size=window_size, layer_size=500, output_size=3)
agent = Agent(model=model, window_size=window_size, trend=close,
skip=skip, initial_money=initial_money, ticker=ticker, save_dir=save_dir)
# 训练代理
agent.fit(iterations=iterations, checkpoint=10)
# 执行交易并获取结果
states_buy, states_sell, total_gains, invest = agent.buy(save_dir)
# 使用可视化工具绘制交易图
plot_trading_result(ticker, close, states_buy, states_sell, total_gains, invest, save_dir)
return {
'total_gains': total_gains,
'investment_return': invest,
'trades_buy': len(states_buy),
'trades_sell': len(states_sell)
}
except Exception as e:
print(f"Error processing {ticker}: {e}")
return None
def main():
"""主函数:执行所有股票的交易策略"""
# 股票列表
tickers = [
'AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA', # 科技
'JPM', 'BAC', 'C', 'WFC', 'GS', # 金融
'JNJ', 'PFE', 'MRK', 'ABBV', 'BMY', # 医药
'XOM', 'CVX', 'COP', 'SLB', 'BKR', # 能源
'DIS', 'NFLX', 'CMCSA', 'NKE', 'SBUX', # 消费
'CAT', 'DE', 'MMM', 'GE', 'HON' # 工业
]
save_dir = 'results'
# 处理每只股票
for ticker in tickers:
process_stock(ticker, save_dir)
if __name__ == "__main__":
main()