-
Notifications
You must be signed in to change notification settings - Fork 5
/
stock_prediction_lstm.py
248 lines (205 loc) · 9.56 KB
/
stock_prediction_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.preprocessing import MinMaxScaler
import pickle
import warnings
from visualization import (
plot_stock_prediction,
plot_training_loss,
plot_cumulative_earnings,
plot_accuracy_comparison
)
warnings.filterwarnings("ignore", category=FutureWarning)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, dropout=0.2):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
def get_stock_data(ticker, data_dir='data'):
file_path = os.path.join(data_dir, f'{ticker}.csv')
data = pd.read_csv(file_path, index_col='Date', parse_dates=True)
return data
def format_feature(data):
features = [
'Volume', 'Year', 'Month', 'Day', 'MA5', 'MA10', 'MA20', 'RSI', 'MACD',
'VWAP', 'SMA', 'Std_dev', 'Upper_band', 'Lower_band', 'Relative_Performance', 'ATR',
'Close_yes', 'Open_yes', 'High_yes', 'Low_yes'
]
X = data[features].iloc[1:]
y = data['Close'].pct_change().iloc[1:]
return X, y
def prepare_data(data, n_steps):
X, y = [], []
for i in range(len(data) - n_steps):
X.append(data[i:i + n_steps])
y.append(data[i + n_steps])
return np.array(X), np.array(y)
def visualize_predictions(ticker, data, predict_result, test_indices, predictions, actual_percentages, save_dir):
actual_prices = data['Close'].loc[test_indices].values
predicted_prices = np.array(predictions)
mse = np.mean((predicted_prices - actual_prices) ** 2)
rmse = np.sqrt(mse)
mae = np.mean(np.abs(predicted_prices - actual_prices))
accuracy = 1 - np.mean(np.abs(predicted_prices - actual_prices) / actual_prices)
metrics = {'rmse': rmse, 'mae': mae, 'accuracy': accuracy}
plot_stock_prediction(ticker, test_indices, actual_prices, predicted_prices, metrics, save_dir)
return metrics
def train_and_predict_lstm(ticker, data, X, y, save_dir, n_steps=60, num_epochs=500, batch_size=32, learning_rate=0.001):
# 数据归一化和准备部分
scaler_y = MinMaxScaler()
scaler_X = MinMaxScaler()
scaler_y.fit(y.values.reshape(-1, 1))
y_scaled = scaler_y.transform(y.values.reshape(-1, 1))
X_scaled = scaler_X.fit_transform(X)
X_train, y_train = prepare_data(X_scaled, n_steps)
y_train = y_scaled[n_steps-1:-1]
train_per = 0.8
split_index = int(train_per * len(X_train))
X_val = X_train[split_index-n_steps+1:]
y_val = y_train[split_index-n_steps+1:]
X_train = X_train[:split_index]
y_train = y_train[:split_index]
# PyTorch数据准备
X_train_tensor = torch.tensor(X_train, dtype=torch.float32).to(device)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32).to(device)
X_val_tensor = torch.tensor(X_val, dtype=torch.float32).to(device)
y_val_tensor = torch.tensor(y_val, dtype=torch.float32).to(device)
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
val_dataset = TensorDataset(X_val_tensor, y_val_tensor)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
model = LSTMModel(input_size=X_train.shape[2], hidden_size=50, num_layers=2, output_size=1).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1)
train_losses = []
val_losses = []
with tqdm(total=num_epochs, desc=f"Training {ticker}", unit="epoch") as pbar:
for epoch in range(num_epochs):
# 训练和验证循环
model.train()
epoch_train_loss = 0
for inputs, targets in train_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_train_loss += loss.item()
avg_train_loss = epoch_train_loss / len(train_loader)
train_losses.append(avg_train_loss)
model.eval()
epoch_val_loss = 0
with torch.no_grad():
for inputs, targets in val_loader:
outputs = model(inputs)
val_loss = criterion(outputs, targets)
epoch_val_loss += val_loss.item()
avg_val_loss = epoch_val_loss / len(val_loader)
val_losses.append(avg_val_loss)
pbar.set_postfix({"Train Loss": avg_train_loss, "Val Loss": avg_val_loss})
pbar.update(1)
scheduler.step()
# 使用可视化工具绘制损失曲线
plot_training_loss(ticker, train_losses, val_losses, save_dir)
# 预测
model.eval()
predictions = []
test_indices = []
predict_percentages = []
actual_percentages = []
with torch.no_grad():
for i in range(1 + split_index, len(X_scaled) + 1):
x_input = torch.tensor(X_scaled[i - n_steps:i].reshape(1, n_steps, X_train.shape[2]),
dtype=torch.float32).to(device)
y_pred = model(x_input)
y_pred = scaler_y.inverse_transform(y_pred.cpu().numpy().reshape(-1, 1))
predictions.append((1 + y_pred[0][0]) * data['Close'].iloc[i - 2])
test_indices.append(data.index[i - 1])
predict_percentages.append(y_pred[0][0] * 100)
actual_percentages.append(y[i - 1] * 100)
# 使用可视化工具绘制累积收益率曲线
plot_cumulative_earnings(ticker, test_indices, actual_percentages, predict_percentages, save_dir)
predict_result = {str(date): pred / 100 for date, pred in zip(test_indices, predict_percentages)}
return predict_result, test_indices, predictions, actual_percentages
def save_predictions_with_indices(ticker, test_indices, predictions, save_dir):
df = pd.DataFrame({
'Date': test_indices,
'Prediction': predictions
})
file_path = os.path.join(save_dir, 'predictions', f'{ticker}_predictions.pkl')
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, 'wb') as file:
pickle.dump(df, file)
print(f'Saved predictions for {ticker} to {file_path}')
def predict(ticker_name, stock_data, stock_features, save_dir, epochs=500, batch_size=32, learning_rate=0.001):
all_predictions_lstm = {}
prediction_metrics = {}
print(f"\nProcessing {ticker_name}")
data = stock_data
X, y = stock_features
predict_result, test_indices, predictions, actual_percentages = train_and_predict_lstm(
ticker_name, data, X, y, save_dir, num_epochs=epochs, batch_size=batch_size, learning_rate=learning_rate
)
all_predictions_lstm[ticker_name] = predict_result
metrics = visualize_predictions(ticker_name, data, predict_result, test_indices, predictions, actual_percentages, save_dir)
prediction_metrics[ticker_name] = metrics
save_predictions_with_indices(ticker_name, test_indices, predictions, save_dir)
# 保存预测指标
os.makedirs(os.path.join(save_dir, 'output'), exist_ok=True)
metrics_df = pd.DataFrame(prediction_metrics).T
metrics_df.to_csv(os.path.join(save_dir, 'output', 'prediction_metrics.csv'))
print("\nPrediction metrics summary:")
print(metrics_df.describe())
# 使用可视化工具绘制准确度对比图
plot_accuracy_comparison(prediction_metrics, save_dir)
# 生成汇总报告
summary = {
'Average Accuracy': np.mean([m['accuracy'] * 100 for m in prediction_metrics.values()]),
'Best Stock': max(prediction_metrics.items(), key=lambda x: x[1]['accuracy'])[0],
'Worst Stock': min(prediction_metrics.items(), key=lambda x: x[1]['accuracy'])[0],
'Average RMSE': metrics_df['rmse'].mean(),
'Average MAE': metrics_df['mae'].mean()
}
# 保存汇总报告
with open(os.path.join(save_dir, 'output', 'prediction_summary.txt'), 'w') as f:
for key, value in summary.items():
f.write(f'{key}: {value}\n')
print("\nPrediction Summary:")
for key, value in summary.items():
print(f"{key}: {value}")
return metrics
if __name__ == "__main__":
tickers = [
'AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA', # 科技
'JPM', 'BAC', 'C', 'WFC', 'GS', # 金融
'JNJ', 'PFE', 'MRK', 'ABBV', 'BMY', # 医药
'XOM', 'CVX', 'COP', 'SLB', 'BKR', # 能源
'DIS', 'NFLX', 'CMCSA', 'NKE', 'SBUX', # 消费
'CAT', 'DE', 'MMM', 'GE', 'HON' # 工业
]
save_dir = 'results' # 设置保存目录
for ticker_name in tickers:
stock_data = get_stock_data(ticker_name)
stock_features = format_feature(stock_data)
predict(
ticker_name=ticker_name,
stock_data=stock_data,
stock_features=stock_features,
save_dir=save_dir
)