-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvisualization.py
170 lines (145 loc) · 5.62 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import matplotlib.pyplot as plt
import os
import numpy as np
def plot_stock_prediction(ticker, test_indices, actual_prices, predicted_prices, metrics, save_dir):
"""
绘制股票预测结果对比图
参数:
ticker: 股票代码
test_indices: 测试集日期索引
actual_prices: 实际价格
predicted_prices: 预测价格
metrics: 包含rmse、mae和accuracy的字典
save_dir: 图片保存的根目录
返回:
str: 保存的图片路径
"""
plt.figure(figsize=(15, 7))
plt.plot(test_indices, actual_prices, label='Actual Price', color='blue', linewidth=2, alpha=0.7)
plt.plot(test_indices, predicted_prices, label='LSTM Prediction', color='red', linewidth=2, linestyle='--', alpha=0.7)
plt.title(f'{ticker} Stock Price Prediction\nRMSE: {metrics["rmse"]:.2f}, MAE: {metrics["mae"]:.2f}')
plt.xlabel('Date')
plt.ylabel('Price')
plt.xticks(rotation=45)
plt.grid(True, alpha=0.3)
plt.legend()
plt.text(0.02, 0.95, f'Prediction Accuracy: {metrics["accuracy"]*100:.2f}%',
transform=plt.gca().transAxes, bbox=dict(facecolor='white', alpha=0.8))
plt.tight_layout()
prediction_dir = os.path.join(save_dir, 'pic/predictions')
os.makedirs(prediction_dir, exist_ok=True)
save_path = os.path.join(prediction_dir, f'{ticker}_prediction.png')
plt.savefig(save_path)
plt.close()
return save_path
def plot_training_loss(ticker, train_losses, val_losses, save_dir):
"""
绘制训练和验证损失曲线
参数:
ticker: 股票代码
train_losses: 训练损失列表
val_losses: 验证损失列表
save_dir: 图片保存的根目录
返回:
str: 保存的图片路径
"""
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Train Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title(f'Training and Validation Loss for {ticker}')
plt.legend()
plt.grid(True)
loss_dir = os.path.join(save_dir, 'pic/loss')
os.makedirs(loss_dir, exist_ok=True)
save_path = os.path.join(loss_dir, f'{ticker}_loss.png')
plt.savefig(save_path)
plt.close()
return save_path
def plot_cumulative_earnings(ticker, test_indices, actual_percentages, predict_percentages, save_dir):
"""
绘制累积收益率曲线
参数:
ticker: 股票代码
test_indices: 测试集日期索引
actual_percentages: 实际收益率列表
predict_percentages: 预测收益率列表
save_dir: 图片保存的根目录
返回:
str: 保存的图片路径
"""
cumulative_naive_percentage = np.cumsum(actual_percentages)
cumulative_lstm_percentage = np.cumsum(
[a if p > 0 else 0 for p, a in zip(predict_percentages, actual_percentages)]
)
plt.figure(figsize=(10, 6))
plt.plot(test_indices, cumulative_naive_percentage, marker='o', markersize=3,
linestyle='-', color='blue', label='Naive Strategy')
plt.plot(test_indices, cumulative_lstm_percentage, marker='o', markersize=3,
linestyle='-', color='orange', label='LSTM Strategy')
plt.title(f'Cumulative Earnings Percentages for {ticker}')
plt.xlabel('Date')
plt.ylabel('Percentage (%)')
plt.xticks(rotation=45)
plt.grid(True)
plt.legend()
plt.tight_layout()
earnings_dir = os.path.join(save_dir, 'pic/earnings')
os.makedirs(earnings_dir, exist_ok=True)
save_path = os.path.join(earnings_dir, f'{ticker}_cumulative.png')
plt.savefig(save_path)
plt.close()
return save_path
def plot_accuracy_comparison(prediction_metrics, save_dir):
"""
绘制所有股票预测准确度对比图
参数:
prediction_metrics: 包含每个股票预测指标的字典
save_dir: 图片保存的根目录
返回:
str: 保存的图片路径
"""
plt.figure(figsize=(15, 6))
accuracies = [metrics['accuracy'] * 100 for metrics in prediction_metrics.values()]
plt.bar(prediction_metrics.keys(), accuracies)
plt.title('Prediction Accuracy Across Stocks')
plt.xlabel('Stock')
plt.ylabel('Accuracy (%)')
plt.xticks(rotation=45)
plt.grid(True, alpha=0.3)
plt.tight_layout()
prediction_dir = os.path.join(save_dir, 'pic')
os.makedirs(prediction_dir, exist_ok=True)
save_path = os.path.join(prediction_dir, 'accuracy_comparison.png')
plt.savefig(save_path)
plt.close()
return save_path
def plot_trading_result(ticker, close_prices, states_buy, states_sell, total_gains, invest, save_dir):
"""
绘制交易结果图表
参数:
ticker: 股票代码
close_prices: 收盘价列表
states_buy: 买入点列表
states_sell: 卖出点列表
total_gains: 总收益
invest: 投资回报率
save_dir: 保存路径
返回:
str: 保存的图片路径
"""
plt.figure(figsize=(15, 5))
plt.plot(close_prices, color='r', lw=2.)
plt.plot(close_prices, '^', markersize=10, color='m', label='buying signal', markevery=states_buy)
plt.plot(close_prices, 'v', markersize=10, color='k', label='selling signal', markevery=states_sell)
plt.title(f'{ticker} total gains ${total_gains:.2f}, total investment {invest:.2f}%')
plt.legend()
# 创建保存目录
trades_dir = os.path.join(save_dir, 'pic/trades')
os.makedirs(trades_dir, exist_ok=True)
# 保存图片
save_path = os.path.join(trades_dir, f'{ticker}_trades.png')
plt.savefig(save_path)
plt.close()
return save_path