Skip to content

Latest commit

 

History

History
32 lines (17 loc) · 841 Bytes

README.md

File metadata and controls

32 lines (17 loc) · 841 Bytes

SRCNN

Implementation of SRCNN in PyTorch.

Usage

To train the model with a zoom factor of 2, for 200 epochs and on GPU:

python main.py --zoom_factor 2 --nb_epoch 200 --cuda

At each epoch, a .pth model file will be saved.

To use the model on an image: (the zoom factor must be the same the one used to train the model)

python run.py --zoom_factor 2 --model model_199.pth --image example.jpg --cuda

Example

Original image:

Original image

Bicubic interpolation zoom:

Bicubic interpolation zoom

SRCNN zoom:

 SRCNN zoom

Reference

Original paper on SRCNN by Dong et al. (Image Super-Resolution Using Deep Convolutional Networks)