This repository is intended to provide a free Self-Learning Roadmap to learn the field of Data Science. I provide some of the best free resources.
โโOur Previous Roadmap
โโ
If you Dont know What`s Data Science or Projects Life Cycle (starting from Business Understanding to Deployment) or Which Programming Language you should go for or Job Descriptions or the required Soft & Hard Skills needed for this field or Data Science Applications or the Most Common Mistakes, then
๐This Video is for you (Highly Recommended โ๏ธ)
Anaconda: Itโs a tool kit that fulfills all your necessities in writing and running code. From Powershell prompt to Jupyter Notebook and PyCharm, even R Studio (if interested to try R)
Atom: A more advanced Python interface, highly recommended by experts.
Google Colab: Itโs like a Jupyter Notebook but in the cloud. You donโt need to install anything locally. All the important libraries are already installed. For example NumPy, Pandas, Matplotlib, and Sci-kit Learn
PyCharm: PyCharm is another excellent IDE that enables you to integrate with libraries such as NumPy and Matplotlib, allowing you to work with array viewers and interactive plots.
Thonny: Thonny is an IDE for teaching and learning programming. Thonny is equipped with a debugger, and supports code completion, and highlights syntax errors.
๐ For Data Camp courses, github student pack gives 3 free months. Google how to get it.
if you already used it, do not hesitate to contact us to have an account with free access.:hibiscus:
- ๐น Video Content
- ๐ Online Article Content / Book
๐ก Roadmap Explanation โถ๏ธ Youtube Video ๐ฅ
Algorithms Book Every piece of code could be called an algorithm, but this book covers the
more interesting bits.
Specializations (data structures-algorithms)
1. Descriptive Statistics
โโโ๐น Intro to descriptive statistics | Same Course on YouTube
โโโ๐น Statistics Fundamentals - StatQuest - Youtube
โโโ๐ Online statistics education
โโโ๐ Intro to descriptive statistics Article1 & Article2
โโโ๐น Arabic Course
โโโ๐น Intro to Inferential Statistics++
โโโ๐ Practical Statistics for Data Scientists
2. Probability
โโโ๐น Khan Academy
โโโ๐น Arabic Course
โโโ๐น Probability and Statistics for AI and DS - Arabic (Dr.Hatem Elattar)
โโโ๐ Introduction to Probability
3. Programming Languages
โ๐นR - good tool for visualization and statistical analysis.
โโโ๐น Introduction to R (Datacamp)
โโโ๐น Data Science Specialization - coursera
โโโ๐ An Introduction to R
โโโ๐ R for Data Science
โ๐นPython๐ฏ
โโโ๐น Introduction to Python Programming
โโโ๐น OOP
โโโ๐น Arabic - Hassouna | Elzero
โโโ๐น Python Full Course - FreeCodeCamp on YouTube
โโโ๐ Intro to Python for CS and Data Science
โโโmore in OOP
4. Pandas
โโโ๐น Corey Schafer-Youtube
โโโ๐ Kaggle
โโโ๐ Docs
โโโ๐น Data School-Youtube
โโโ๐น Arabic Course
โโโ๐น PandasAI๐ผ1 - 2 Enhances the capabilities of Pandas by integrating Generative AI functionalities into it.
5. Numpy
โโโ๐ Kaggle โ
โโโ๐น Arabic Course
โโโ๐ Tutorial
โโโ๐ Docs
6. Scipy
โโโ๐ Tutorial
โโโ๐ Docs
7. Data Cleaning: One of the MOST important skills that you need to master to become a good data scientist, you need to practice on many datasets to master it.
โโโRead this
โโโ๐น Course 1
โโโ๐ Notebook1
โโโ๐ Notebook2
โโโ๐ Notebook3
โโโ๐ Kaggle Data cleaning
8. Data Visualization ๐
โโโ๐น Introduction to Data Visualization with Matplotlib or
โโโ๐น Corey Schafer - Playlist on Youtube or
โโโ๐น sentdex - Playlist on YouTube
โโโ๐ Kaggle to Data Visualization with Seaborn
โโโ๐น Playlist-Youtube
โโโ๐น Course1: Intro to Data Visualization with Seaborn
โโโ๐น Course2: Intermediate Data Visualization with Seaborn
โโโ๐น Course3: Understanding and Visualizing with Python
9. EDA
Note: it's already mentioned in the above probability course
โโโ๐น DataCamp-EDA in Python
โโโ๐น IBM-EDA for Machine Learning
10. Dashboards
โPower BI
โโโ๐น Power BI - Youtube (Alex)
โโโ๐น Power BI training
โโโ๐น Arabic - Youtube (Zanoon)
โโโ๐น Arabic - Youtube
โโโ๐น Guy in a Cube - Youtube
โTableau
โโโ๐ Tutorial
โโโ๐น docs
โโโ๐น course - datacamp
โโโ๐น Simplilearn - Youtube
11. SQL and DB
โโโ๐น SQL for Data Analysis (Udacity-notesl๐l or simplilearn)
โโโ๐น Intro to SQL or IBM (SQL for Data Science)
โโโ๐น Intro to Relational Databases in SQL
โโโ๐น Arabic Course (Theoritical - Practical) Eldesouki
โโโ๐น Arabic - ITI by Eng.Ramy Advanced - [Notes]๐- [Course Materials]
โโโ๐น Arabic - SQL for Data Analysis by Ahmed Sami
โโโ๐น 365 Data Science - SQL
โโโ๐น CMU Intro to DB - Fall 2022 - <Schedule๐
> - Book๐
โโโ๐ SQL for Data Analysis
โโโ๐ Practice HackerRank & DataLemur
12. DWH : A system used for reporting - A core component of business intelligence.
โโโโ Mostly used by Data Engineers.
โโโ๐ The Data Warehouse Toolkit
โโโ๐น Data Warehousing Tutorial Videos
โโโ๐น Garage Education (Ar)
โโโ๐น Implementing Data Warehouse in Arabic (Ar)
โโโ๐น More in Arabic? (Ar)
โโโ๐น Data Warehouse - University of Colorado
โโโ๐น [SSIS] SQL Server Integration Services (Ar)
โโโ๐น Project - Building Sales Data Mart Using SSIS (Ar)
โโโ๐น Project - Building DWH Step by Step
โโโ๐น Project - Create DWH Fact and Dimensions (Ar)
โโโ๐น Implement SCD in SSIS Continue the playlist
โโโ๐น CDC in SSIS tutorial
13. Python Regular Expression
โโโ๐ Tutorial
14. Time Series Analysis
โโโ๐น Track - DataCamp
โโโ๐น Course - Coursera
โโโ๐ Book
โโโ๐ fbprohet
โโโ๐น Arabic Source Video1 & Video2
1. Math for ML: consists of Linear Algebra, Calculus and PCA.
๐น Mathematics for Machine Learning and Data Science - Andrew Ng
๐น Specialization
๐น Mathematics for Machine Learning - Most of the needed basics
๐นLinear Algebra
โโโ๐น Khan Academy - Linear Algebra
โโโ๐น Mathematics for Machine Learning: Linear Algebra
โโโ๐น 3Blue1Brown - Essence of Linear Algebra
๐นCalculus
โโโ๐น Multivariate Calculus - Coursera
โโโ๐น Essence of calculus - Youtube
๐นPCA
โโโ๐น PCA - Coursera
2. Machine Learning
โโโ๐น Coursera - Old Course by Andrew Ng (Octave/Matlab)
โโโ๐น Coursera Andrew`s new ML Specialization (Python)
โโโ๐น Machine Learning - StatQuest - YouTube
โโโ๐น Machine Learning Stanford Full Course on YouTube by Andrew
โโโ๐น CS480/680 Intro to Machine Learning - Spring 2019 - University of Waterloo
โโโ๐น SYDE 522 โ Machine Intelligence (Winter 2018, University of Waterloo)
โโโ๐น Machine Learning for Engineers 2022 / (YouTube)
โโโ๐น Introduction to Machine Learning Course - Udacity
โโโ๐น Hesham Asem - Arabic content
โโโ๐น IBM ML with Python
โโโ๐น Machine Learning From Scratch - YouTube (Python Engineer)
โโโ๐ Hands On ML (1st & 2nd & 3rd) Editions | Code:
โโโ๐น ML Algorithms in Practice
โโโ๐น ML scientist
โโโ๐น Project
3. Web Scraping/APIs
โโโ๐น course
โโโ๐ intro2
โโโ๐ Tutorial
โโโ๐ Book for both topics
APIs
โโโ๐ Tutorial
โโโ๐ Article
โโโ๐ Tutorial
4. Stats.
โโโ๐ This stats - Book
โโโ๐ Think Bayes - Book
5. Advanced SQL
โโโ๐น Joining Data in SQL - DataCamp
โโโ๐น Intermediate SQL - DataCamp
โโโ๐น More advanced SQL
7. Feature Engineering
โโโ๐ Tutorial
โโโ๐ Article
โโโ๐ Book
8. interpret Shapley-based explanations of ML models.
โโโ๐ SHAP
โโโ๐ Kaggle ML explainability
Read this book, please ๐ Introduction to Statistical Learning with Applications in R ุจูููู ุงูุฑุฃู
1. Deep Learning
โโโ๐น Deep Learning Fundamentals
โโโ๐น Introduction to
Deep Learning - MIT
โโโ๐น Specialization
โโโ๐ Dive into Deep Learning (En) | (Ar) version โก๏ธPart1 & Part2
โโโ๐น Deep Learning UC Berkely
โโโ๐ github of Dive into DL
โโโ๐น Stanford Lecture - Convolutional Neural Networks for Visual Recognition
โโโ๐น University of Waterloo - ML / DL
โโโ๐ Deep Learning for coders with fastai & PyTorch
2. Tensorflow
โโโ๐น Specialization
โโโ๐น Youtube
โโโ fast.ai's Deep Learning Courses
TensorFlow beats PyTorch in visualization capabilities and deploying trained models. Go for PyTorch if you want flexibility, debugging capabilities, and short training duration.
3. PyTorch
โโโ๐น PyTorch (UC Berkeley - Youtube) - Lec3 (The 5 parts)
โโโ๐น PyTorch - Dr. Data Science - Youtube
โโโ๐น Pytorch Tutorial - Aladdin - Youtube
โโโ๐น PyTorch Course (2022) - Youtube
โโโ๐ Deep Learning With Pytorch
โโโ๐ Machine Learning with PyTorch and Scikit-Learn -2022
4. Advanced Data Science
โโโ๐น Advanced Data Science with IBM Specialization Includes Apache Spark
โโ ๏ธAdvanced ML Topics๐ง | Lecs (YouTube)
โโโ๐น Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022 - Materials
โโโ๐น 18.409 Algorithmic Aspects of Machine Learning Spring 2015 - MIT
โโ ๏ธML based Computer Vision | Lecs (YouTube)
โโโ๐น CS 198-126: Modern Computer Vision Fall 2022 (UC Berkeley)
โโโ๐น NOC:Deep Learning For Visual Computing - IIT Kharagpur
โโโ๐น Deep Learning for Computer Vision - Michigan
5. NLP
โโโ๐น Specialization - Coursera
โโโ๐น Arabic - Ahmed El Sallab
โโโ๐น Stanford CS224N Lectures - Winter 2021- YouTube
โโโ๐น Stanford XCS224U Lectures - Spring 2021- YouTube
โโโ๐น Introduction to Natural Language Processing in Python
โ๐ธLLMS What`s Large Language Model?
โโโ๐น Generative AI for Everyone (Andrew Nj) - Coursera๐
โโโ๐น Generative AI with LLMs
โโโ๐น Stanford CS236: Deep Generative Models I 2023 - YouTube
โโโ๐น Stanford CS25 - Transformers United 2023 - YouTube
โโโ๐น Recent Advances on Foundation Models - Winter 2024 - University of Waterloo
โโโ๐น Understanding LLMs Foundations and Safety UC Berkeley - Spring 2024 - YouTube
โโโ๐น LLM Foundations
โโโ๐น How ChatGPTs / Transformers work?1 - 2 - 3 overview & Maths behind
โโโ๐น Prompt Engineering | (Ar) If you want to get the most out of LLMs
โโโ๐น LLMOps A Lec going through the entire LLM pipeline
6. Inferential Statistics
โโโ๐น Specialization, 2nd & 3rd courses
โโโ๐น course
7. Bayesian Statistics
โโโ๐น 1 - From Concept to Data Analysis
โโโ๐น 2 - Techniques and Models
โโโ๐น 3 - Mixture Models
8. Model Deployment
โโโ๐ Flask tutorial
โโโ๐น TensorFlow: Data and Deployment Specialization
โโโ๐น Deploy Models with TensorFlow Serving and Flask
โโโ๐น How to Deploy a Machine Learning Model to Google Cloud - Daniel Bourke
โโโif you`re interested in more deployment methods, search for (FastAPI - Heroku - chitra)
9. MLOps : is a combination of Model Deployment, Model Serving, Model Monitoring, and Model Maintenance.
โโโ๐ MLOps-zoomcamp
โโโ๐ MLOps-guide
โโโ๐ Practical MLOps
10. Probabilistic Graphical Models
โโโ๐น Specialization - Coursera
โโโ๐น Spring 2016, University of Utah - YouTube
๐ Read these books, they will be beneficial to you.
โ ๐ Bayesian Reasoning and Machine Learning
โ ๐ The Elements of Statistical Learning
โ ๐ Pattern Recognition and Machine Learning - Bishop (Advanced)
โโ Recommended by Eng.Mohamed Hammad.
โโโ๐ฅDeena Gergis - End to end Project
โโโ๐ฅMachine Learning Projects - Youtube
โโโ๐ปTop 10 Data Science Projects for Beginners
โโโ๐ป12 Data Science Projects for Beginners and Experts
โโโ๐ปData Science Projects & Ideas
โโโ๐ปTop 310+ Machine Learning Projects for 2023
โโโ๐ป10 End-to-End Guided Data Science Projects
โโโ๐ฅReal-World ML Tutorial w/ Scikit Learn
โโโ๐ปPython Codes in Data Science
โโโ๐ฅEnd To End ML Project With Dockers,Github Actions And Deployment
โโโ๐ป12 free Data Science projects to practice Python and Pandas (resolve interactive online)
English | Arabic | Book |
---|---|---|
๐ฅ Git - Udacity | ๐ฅ ุดุฎุจุท ูุงูุช ู ุทู ู ๐ | ๐ Pro Git |
๐ w3schools | ๐ฅ almadrasa | |
โ | ๐ฅ Elzero |
๐ More Books ๐ Check This!
โโ๐ ๐ฅ 12 Free Important Books ๐ฅ
โโ๐ Mathematics for Machine Learning
โโ๐ An Introduction to Statistical Learning
โโ๐ Understanding ML: From Theory to Algorithms
โโ๐ Probabilistic Machine Learning: An Introduction
โโ๐ storytelling with data โ๏ธImportant data visualization guide.
-
Pandas
โโ - (1) โโ - (2) โโ - (3)
-
Machine Learning Cheat Sheets (Recommended Guide) ุฑุงุฌุน ุงูู ูุงุถูุน ุงููู ูู ุงูุดูุช ุฏู ูุง ุนุฒูุฒู ูุดูู ุงููู ูุงูุตู
Competitions will make you even more proficient in Data Science.
When we talk about top data science competitions, Kaggle is one of the most popular platforms for data science. Kaggle has a lot of competitions where you can participate according to your knowledge level.
You can also check these platforms for data science competitions-
- Driven Data
- Codalab
- Iron Viz
- Topcoder
- CrowdANALYTIX Community
- Bitgrit
๐ Data Science Interview Questions:
โโโโโโโโโโโโโโโโโโโโ- (7) 30 days of interview preparation๐
๐งData Science Podcasts: ๐๏ธ
The Best Way to Stay Up-to-Date on the Latest Data Science Trends and Developments
Podcasts | About | Produced by |
---|---|---|
Data Science at Home | A podcast that provides practical advice and tutorials on data science topics. | Greg Linhardt, a data scientist and machine learning engineer at Google AI |
Data Stories | An interview-driven podcast that tells the stories of data scientists and how they're using their skills to make a difference in the world. | Kirill Eremenko, a data scientist and machine learning engineer at Netflix |
O'Reilly Data Show | A podcast that covers a wide range of data science topics, from machine learning to artificial intelligence to big data. | Ben Lorica, the Chief Data Scientist at O'Reilly |
Learning Machines 101 | Mathematics, statistics, and algorithms that power the machine learning systems that we rely on every day. | Richard Golden, a machine learning engineer and researcher at Google AI |
Data Engineering Podcast | Tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation. | Tobias Macey, a data engineer at Netflix |
Data Science Mixer | A great resource for anyone who wants to learn more about data science and the latest trends in the field. It is also a great way to get inspired by the work of other data scientists and machine learning engineers. | Alteryx, a data science and analytics software company |
Chai Time Data Science Show | Interviews top data scientists, practitioners, and researchers from around the world. | Sanyam Bhutani, a data scientist and machine learning engineer at Google AI. |
Becoming a Data Scientist | Podcast that interviews data scientists about their journey to becoming a data scientist. | Renee Teate, a data scientist and machine learning engineer at Google AI. |
AI Today Podcast | Explores the latest trends and developments in artificial intelligence. | Ron Schmelzer and Kathleen Walch |
Gradient Dissent | A weekly podcast that explores the latest research in machine learning and artificial intelligence. | Chris Olah, a machine learning engineer at Google AI |
Data Skeptic | A podcast that challenges the conventional wisdom in data science and asks tough questions about the ethics and implications of data-driven decision making. | Kyle Polich, a data scientist and machine learning engineer |
Linear Digressions | A podcast that covers a wide range of data science topics, from the technical to the theoretical. | Ben Recht and Noah Smith, two machine learning researchers at the University of California, Berkeley |
The Data Engineering Show | For data engineering and BI practitioners to go beyond theory, and learn from the biggest influencers in tech about their practical day to day data challenges. | Eldad Farkash and Benjamin Wagner, who are both data engineering experts with experience at companies like Firebolt and Sisense |
DataTalks.Club | A weekly online community of data enthusiasts and practitioners that learn from each other and share their knowledge and experiences through meetups, workshops, and a podcast. | A rotating cast of data experts |
Datacast | Top data scientists and practitioners in the data and AI infrastructure space. | James Le, who is a data infrastructure expert with experience at companies like Google and Netflix |
How to Get an Analytics Job Podcast | A great resource for anyone who is interested in a career in analytics. The guests share their insights and advice on how to get started in analytics and how to succeed in an analytics career. | John David Ariansen, an analytics agency owner and career coach |
The Analytics Power Hour | Five awesome people, an occasional guest, and drinks all around tackling the hottest data and analytics topics of the day. | Tim Wilson, Michael Helbling, Josh Crowhurst, and Val Kroll. They are all analytics experts from different companies |
โโโ ๐ Arabic Podcasts??
โโโ๐ปArabic Data Podcast | Spotify by Eng. Kareem Abdelsalam
โโโ๐ปlุฅูู ุงูุจูุงูุงุช ูู
ุง ุจุนุฏูุง by Eng. Youssef Hosni
โโโ๐ปGarage Education by Eng. Mostafa Alaa
โโโ๐ปData Science ุจุงูุนุฑุจู
๐ Data Analysis Recommendations.
Books (๐ The Data Analysis Workshop &
๐ Head First Data Analysis)
FWD - (The 3 Levels)
Google Data Analytics Professional Certificate
IBM Data Analyst Professional Certificate
Google Advanced Data Analytics Professional Certificate ๐
Alex The Analyst - YouTube๐บ
Note: A good knowledge & projects in just Excel, SQL & Power BI / Tableau can bring you great opportunities.
โโ- Excel More Resources: (Arabic 1๐น - Arabic 2๐น - Books ๐ and cheat sheets for revising)
๐ Data Engineering Recommendations.
Books (๐ Fundamentals of Data Engineering &
๐ Designing Data-Intensive Applications)
Arabic Podcast, Starting a Career in Data Engineering.
For Arab, I recommend 2 YouTube Channels: (Garage Education & Big Data ุจุงูุนุฑุจู)
Roadmap 1 - (Recommended)
Roadmap 2
Roadmap 3
IBM Data Engineering Professional Certificate
Note: A good knowledge & projects in SQL, Python, Apache Spark/Hadoop, Data Modeling and [Data Warehouse - {Arabic-Starting from the 7th video} can bring you great opportunities. Start with them then go for the other tools,concepts and cloud platforms.
๐ CV / Resumes ๐ โ
- Common mistakes by Yehia Arafa Mostafa
- CV Tips by Omar Yasser
- This Is What A GOOD Resume Should Look Like by careercup
- After you have made your beta-version resume, check those reviews from Mostafa Nageeb
- After Graduation by Yasser Alaa
- How to make Data Science Resume
- Data Science Resume Guide
- Resume/CV building for Data Jobs (Arabic)
โโ๐นVideo 1
โโ๐นVideo 2
๐ Data & AI Companies in Egypt โ - โ AI/ML Driven Companies In Egypt