-
Notifications
You must be signed in to change notification settings - Fork 1
/
cat.mod
129 lines (103 loc) · 1.87 KB
/
cat.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
TITLE T-calcium channel
: T-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
v (mV)
celsius = 25 (degC)
gcatbar=.003 (mho/cm2)
cai = 50.e-6 (mM)
cao = 2 (mM)
q10 = 5
mmin=0.2
hmin=10
a0h =0.015
zetah = 3.5
vhalfh = -75
gmh=0.6
a0m =0.04
zetam = 2
vhalfm = -28
gmm=0.1
}
NEURON {
SUFFIX cat
USEION ca READ cai,cao WRITE ica
RANGE gcatbar, ica, gcat
GLOBAL hinf,minf,mtau,htau
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
gcat (mho/cm2)
hinf
htau
minf
mtau
}
INITIAL {
rates(v)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcat = gcatbar*m*m*h
ica = gcat*ghk(v,cai,cao)
}
DERIVATIVE states { : exact when v held constant
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (DegC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alph(v(mV)) {
alph = exp(0.0378*zetah*(v-vhalfh))
}
FUNCTION beth(v(mV)) {
beth = exp(0.0378*zetah*gmh*(v-vhalfh))
}
FUNCTION alpmt(v(mV)) {
alpmt = exp(0.0378*zetam*(v-vhalfm))
}
FUNCTION betmt(v(mV)) {
betmt = exp(0.0378*zetam*gmm*(v-vhalfm))
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,b, qt
qt=q10^((celsius-25)/10)
a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
b = 0.009*exp(-v/22.03)
minf = a/(a+b)
mtau = betmt(v)/(qt*a0m*(1+alpmt(v)))
if (mtau<mmin) {mtau=mmin}
a = 1.e-6*exp(-v/16.26)
b = 1/(exp((-v+29.79)/10.)+1.)
hinf = a/(a+b)
htau = beth(v)/(a0h*(1+alph(v)))
if (htau<hmin) {htau=hmin}
}