-
Notifications
You must be signed in to change notification settings - Fork 1
/
rkc.lua
234 lines (182 loc) · 5.89 KB
/
rkc.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
-- (almost) direct translation from rkc.f [http://www.netlib.org/ode/rkc.f]
-- Implementation of Runge-Kutta-Chebyshev explicit ODE solver
--
-- Plan:
-- 1. basic stage: fixed timestep and s (order of Chebyshev polynomials) [DONE]
-- 2. error estimation & control [in progress]
-- 3. automatic time step adjustment [almost-DONE]
-- 4. automatic s
-- 5. spectral radius
--
--require "profiler"
require 'lib'
module(..., package.seeall);
function rkc_v1(t,h,s,obj) -- first version
local c,mu,mut,nu,gammat = calc_coefs(s)
local phase = obj.phase
local dv = obj.derivatives
local W0 = phase
local F0 = obj:derivs(t,phase)
local W1 = phase + mut[1]*h*F0
local Wm1,Wm2 = W1,W0
local W = W0+0
local thr = 1e3
for j = 2,s do
if math.abs(absmax_phase(W)) > thr then
io.stderr:write('j: ',j,', mu: ',
mu[j],', nu: ', nu[j], ', mut: ',
mut[j],', gammat: ', gammat[j],'\n')
io.stderr:write(obj:pr_state(t,W))
error(string.format("the solution has ran away: %f",
absmax_phase(W) ))
end
W = (1 - mu[j] - nu[j])*W0 + mu[j]*Wm1 + nu[j]*Wm2
W = W + mut[j]*h*(obj:derivs(t+c[j-1]*h,Wm1) + gammat[j]*F0)
Wm2 = Wm1 -- wrap around
Wm1 = W
end
--io.stderr:write('\n')
return W
end
function calc_coefs(s)
-- calculate coefficients for number of stages s.
-- Return vectors. Used in rkc_v1
local coefs = {}
local epsilon,w0,w1,tmp1,tmp2,arg
local b = {}
local mu = {}
local nu = {}
local mut = {} -- mu with tilda
local c = {} -- step size adjustments
local gammat = {} -- gamma with tilda
local T,dT,d2T = {},{},{} -- Chebyshev polynomial and its derivatives
epsilon = 2/13
w0 = 1 + epsilon/(s*s)
tmp1 = w0*w0 - 1 -- temporary var
tmp2 = math.sqrt(tmp1) -- temporary var
arg = s*math.log(w0 + tmp2)
-- w1 = T's(w0)/T''s(w0)
w1 = math.sinh(arg)*tmp1 / (math.cosh(arg)*s*tmp2 - w0 *math.sinh(arg))
--?--
b[0] = .25/(w0*w0)
b[1] = b[0]
mut[1] = w1*b[1]
T[0] = 1 -- todo: check!
T[1] = w0
dT[0] = 0
dT[1] = 1
d2T[0] = 0
d2T[1] = 0
c[0]= 0 --
c[1] = mut[1] -- as in rkc.f
for j = 2,s do
T[j] = 2*w0*T[j-1] - T[j-2]
dT[j] = 2*w0*dT[j-1] - dT[j-2] + 2*T[j-1]
d2T[j] = 2*w0*d2T[j-1] - d2T[j-2] + 4*dT[j-1]
b[j] = d2T[j] / (dT[j] * dT[j])
mu[j] = 2 * w0*b[j] / b[j-1]
nu[j] = -b[j] / b[j-2]
mut[j] = mu[j] * w1 / w0
gammat[j] = -1 + T[j-1]*b[j-1]
c[j] = mu[j]*c[j-1] + nu[j]*c[j-2] + mut[j]*(1 + gammat[j]) -- as in the rkc.f code
--c[j] = w1*d2T[j]/dT[j] -- as in the paper (B.P. Sommeijer et. al, 1997), not in the rkc.f code
end
--c[1] = c[2]/dT[2]
--c[s] = 1
return c,mu,mut,nu,gammat
end
function rkc_v3(W0, t,h,s,obj) -- third version (speed optimisation)
local eps,w0,w1,tmp1,arg
eps = 2/13
w0 = 1+ eps/(s*s)
tmp1 = w0*w0 - 1
arg = s*math.log(w0 + math.sqrt(tmp1))
w1 = math.sinh(arg)*tmp1 / (math.cosh(arg)*s*math.sqrt(tmp1) -
w0 *math.sinh(arg))
local cfs_2 = { -- coefs_{j-2}
b = .25/(w0*w0),
T = 1, dT = 0, d2T = 0, c = 0,
}
local cfs_1 = { -- coefs_{j-1}
b = cfs_2.b, T = w0, dT = 1, d2T = 0,
mut = w1*cfs_2.b,
c = w1*cfs_2.b, -- as in rkc.f
}
local dv
local F0 = obj:derivs(t, W0) + 0 -- derivs with the original phase
local Wm1 = W0 + F0*(cfs_1.mut*h)
local Wm2 = W0 + 0
local W = W0 + 0 --setmetatable({}, lib.vecmt)
local cfs = {}
for j = 2,s do
cfs.T = 2*w0*cfs_1.T - cfs_2.T
cfs.dT = 2*w0*cfs_1.dT - cfs_2.dT + 2*cfs_1.T
cfs.d2T = 2*w0*cfs_1.d2T - cfs_2.d2T + 4*cfs_1.dT
cfs.b = cfs.d2T / (cfs.dT * cfs.dT)
cfs.mu = 2*w0*cfs.b/cfs_1.b
cfs.nu = -cfs.b / cfs_2.b
cfs.mut = cfs.mu * w1 / w0
cfs.gat = -1 + cfs_1.T * cfs_1.b
--as in the rkc.f
--cfs.c = cfs.mu*cfs_1.c + cfs.nu*cfs_2.c + cfs.mut*(1 + cfs.gat)
-- as in the paper (B.P. Sommeijer et. al, 1997),
-- not as in the rkc.f code
cfs.c = w1*cfs.d2T/cfs.dT
dv = obj:derivs(t + cfs_1.c*h, Wm1) -- calc derivs with another phase
for n,val in ipairs(W0) do
W[n] = ((1 - cfs.mu - cfs.nu)*val +
cfs.mu*Wm1[n] + cfs.nu*Wm2[n] +
cfs.mut*h*(dv[n] + cfs.gat*F0[n]))
----------
Wm2[n] = Wm1[n]
Wm1[n] = W[n]
end
--wrap around --TODO: redefine as a tail recursion :)
--(cp_vector target source) [desctructive for target]
--lib.cp_vector(Wm2,Wm1)
--lib.cp_vector(Wm1,W)
lib.cp_simp_table(cfs_2,cfs_1)
lib.cp_simp_table(cfs_1,cfs)
--io.stderr:write(string.format("::: %3.20e :::\n\n",
-- lib.sum_sq_vect(W)))
end
return W, t+h, h
end
function Estnm1(U0, U1, dv0, dv1, h)
local E = setmetatable({}, lib.vecmt)
for i,val in ipairs(U0) do
E[i] = ((U0[i] - U1[i])*2 + h*(dv0[i] + dv1[i]))*2/5
end
return E
end
function Est2(a,b,h)
return (a*12 + 6*h*b)/15
end
local hprev = 0.0
function rkc_a(U0, t, h, s, obj)
-- rkc with adjustable timestep [gives ca 3x speedup]
--profiler.start()
local recipr_atol = 1/1e-3
local nmax = 1e3
local j,n = 0,0
local dv0 = obj:derivs(t, U0) + 0
local dv1
local U1, E, err
local rec = 0.85 -- h recalculating coefficient
h = h/rec
repeat
U1 = rkc_v3(U0, t, h, s, obj)
dv1 = obj:derivs(t+h, U1)
E = Estnm1(U0, U1, dv0, dv1, h) * recipr_atol
err,n = lib.sum_sq_vect(E)
err = math.sqrt(err/n)
h = h*rec
j = j+1
until (err <= 1 or j > nmax)
h = h/rec
local tnext = t + h
--profiler.stop()
--io.stderr:write(string.format('-------------\n'))
return U1, tnext, h
end
rkc = rkc_v3 -- pointer to the active verstion