-
Notifications
You must be signed in to change notification settings - Fork 1
/
cdp5.mod
293 lines (227 loc) · 6.41 KB
/
cdp5.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
: Calcium ion accumulation with endogenous buffers, DCM and pump
COMMENT
The basic code of Example 9.8 and Example 9.9 from NEURON book was adapted as:
1) Extended using parameters from Schmidt et al. 2003.
2) Pump rate was tuned according to data from Maeda et al. 1999
3) DCM was introduced and tuned to approximate the effect of radial diffusion
Reference: Anwar H, Hong S, De Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cell. Cerebellum*
*Article available as Open Access
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20981513
Written by Haroon Anwar, Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 2010.
Contact: Haroon Anwar (anwar@oist.jp)
ENDCOMMENT
NEURON {
SUFFIX cdp5
USEION ca READ cao, cai, ica WRITE cai
RANGE ica_pmp
RANGE Nannuli, Buffnull2, rf3, rf4, vrat
GLOBAL TotalPump
}
UNITS {
(mol) = (1)
(molar) = (1/liter)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
FARADAY = (faraday) (10000 coulomb)
PI = (pi) (1)
}
PARAMETER {
Nannuli = 10.9495 (1)
celsius (degC)
cainull = 45e-6 (mM)
mginull =.59 (mM)
: values for a buffer compensating the diffusion
Buffnull1 = 0 (mM)
rf1 = 0.0134329 (/ms mM)
rf2 = 0.0397469 (/ms)
Buffnull2 = 60.9091 (mM)
rf3 = 0.1435 (/ms mM)
rf4 = 0.0014 (/ms)
: values for benzothiazole coumarin (BTC)
BTCnull = 0 (mM)
b1 = 5.33 (/ms mM)
b2 = 0.08 (/ms)
: values for caged compound DMNPE-4
DMNPEnull = 0 (mM)
c1 = 5.63 (/ms mM)
c2 = 0.107e-3 (/ms)
: values for Calbindin (2 high and 2 low affinity binding sites)
CBnull= .16 (mM)
nf1 =43.5 (/ms mM)
nf2 =3.58e-2 (/ms)
ns1 =5.5 (/ms mM)
ns2 =0.26e-2 (/ms)
: values for Parvalbumin
PVnull = .08 (mM)
m1 = 1.07e2 (/ms mM)
m2 = 9.5e-4 (/ms)
p1 = 0.8 (/ms mM)
p2 = 2.5e-2 (/ms)
kpmp1 = 3e-3 (/mM-ms)
kpmp2 = 1.75e-5 (/ms)
kpmp3 = 7.255e-5 (/ms)
TotalPump = 1e-9 (mol/cm2)
}
ASSIGNED {
diam (um)
ica (mA/cm2)
ica_pmp (mA/cm2)
parea (um) : pump area per unit length
parea2 (um)
cai (mM)
cao (mM)
mgi (mM)
vrat (1)
}
: CONSTANT { cao = 2 (mM) }
STATE {
: ca[0] is equivalent to cai
: ca[] are very small, so specify absolute tolerance
: let it be ~1.5 - 2 orders of magnitude smaller than baseline level
ca (mM)
mg (mM) <1e-7>
Buff1 (mM)
Buff1_ca (mM)
Buff2 (mM)
Buff2_ca (mM)
BTC (mM)
BTC_ca (mM)
DMNPE (mM)
DMNPE_ca (mM)
CB (mM)
CB_f_ca (mM)
CB_ca_s (mM)
CB_ca_ca (mM)
PV (mM)
PV_ca (mM)
PV_mg (mM)
pump (mol/cm2) <1e-15>
pumpca (mol/cm2) <1e-15>
}
BREAKPOINT {
SOLVE state METHOD sparse
}
LOCAL factors_done
INITIAL {
factors()
ca = cainull
mg = mginull
Buff1 = ssBuff1()
Buff1_ca = ssBuff1ca()
Buff2 = ssBuff2()
Buff2_ca = ssBuff2ca()
BTC = ssBTC()
BTC_ca = ssBTCca()
DMNPE = ssDMNPE()
DMNPE_ca = ssDMNPEca()
CB = ssCB( kdf(), kds())
CB_f_ca = ssCBfast( kdf(), kds())
CB_ca_s = ssCBslow( kdf(), kds())
CB_ca_ca = ssCBca( kdf(), kds())
PV = ssPV( kdc(), kdm())
PV_ca = ssPVca(kdc(), kdm())
PV_mg = ssPVmg(kdc(), kdm())
parea = PI*diam
parea2 = PI*(diam-0.2)
ica = 0
ica_pmp = 0
: ica_pmp_last = 0
pump = TotalPump
pumpca = 0
}
PROCEDURE factors() {
LOCAL r, dr2
r = 1/2 : starts at edge (half diam)
dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus,
vrat = PI*(r-dr2/2)*2*dr2 : interior half
r = r - dr2
}
LOCAL dsq, dsqvol : can't define local variable in KINETIC block
: or use in COMPARTMENT statement
KINETIC state {
COMPARTMENT diam*diam*vrat {ca mg Buff1 Buff1_ca Buff2 Buff2_ca BTC BTC_ca DMNPE DMNPE_ca CB CB_f_ca CB_ca_s CB_ca_ca PV PV_ca PV_mg}
COMPARTMENT (1e10)*parea {pump pumpca}
:pump
~ ca + pump <-> pumpca (kpmp1*parea*(1e10), kpmp2*parea*(1e10))
~ pumpca <-> pump (kpmp3*parea*(1e10), 0)
CONSERVE pump + pumpca = TotalPump * parea * (1e10)
ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea
: all currents except pump
: ica is Ca efflux
~ ca << (-ica*PI*diam/(2*FARADAY))
:RADIAL DIFFUSION OF ca, mg and mobile buffers
dsq = diam*diam
dsqvol = dsq*vrat
~ ca + Buff1 <-> Buff1_ca (rf1*dsqvol, rf2*dsqvol)
~ ca + Buff2 <-> Buff2_ca (rf3*dsqvol, rf4*dsqvol)
~ ca + BTC <-> BTC_ca (b1*dsqvol, b2*dsqvol)
~ ca + DMNPE <-> DMNPE_ca (c1*dsqvol, c2*dsqvol)
:Calbindin
~ ca + CB <-> CB_ca_s (nf1*dsqvol, nf2*dsqvol)
~ ca + CB <-> CB_f_ca (ns1*dsqvol, ns2*dsqvol)
~ ca + CB_f_ca <-> CB_ca_ca (nf1*dsqvol, nf2*dsqvol)
~ ca + CB_ca_s <-> CB_ca_ca (ns1*dsqvol, ns2*dsqvol)
:Paravalbumin
~ ca + PV <-> PV_ca (m1*dsqvol, m2*dsqvol)
~ mg + PV <-> PV_mg (p1*dsqvol, p2*dsqvol)
cai = ca
mgi = mg
}
FUNCTION ssBuff1() (mM) {
ssBuff1 = Buffnull1/(1+((rf1/rf2)*cainull))
}
FUNCTION ssBuff1ca() (mM) {
ssBuff1ca = Buffnull1/(1+(rf2/(rf1*cainull)))
}
FUNCTION ssBuff2() (mM) {
ssBuff2 = Buffnull2/(1+((rf3/rf4)*cainull))
}
FUNCTION ssBuff2ca() (mM) {
ssBuff2ca = Buffnull2/(1+(rf4/(rf3*cainull)))
}
FUNCTION ssBTC() (mM) {
ssBTC = BTCnull/(1+((b1/b2)*cainull))
}
FUNCTION ssBTCca() (mM) {
ssBTCca = BTCnull/(1+(b2/(b1*cainull)))
}
FUNCTION ssDMNPE() (mM) {
ssDMNPE = DMNPEnull/(1+((c1/c2)*cainull))
}
FUNCTION ssDMNPEca() (mM) {
ssDMNPEca = DMNPEnull/(1+(c2/(c1*cainull)))
}
FUNCTION ssCB( kdf(), kds()) (mM) {
ssCB = CBnull/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBfast( kdf(), kds()) (mM) {
ssCBfast = (CBnull*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBslow( kdf(), kds()) (mM) {
ssCBslow = (CBnull*kdf())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBca(kdf(), kds()) (mM) {
ssCBca = (CBnull*kdf()*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION kdf() (1) {
kdf = (cainull*nf1)/nf2
}
FUNCTION kds() (1) {
kds = (cainull*ns1)/ns2
}
FUNCTION kdc() (1) {
kdc = (cainull*m1)/m2
}
FUNCTION kdm() (1) {
kdm = (mginull*p1)/p2
}
FUNCTION ssPV( kdc(), kdm()) (mM) {
ssPV = PVnull/(1+kdc()+kdm())
}
FUNCTION ssPVca( kdc(), kdm()) (mM) {
ssPVca = (PVnull*kdc())/(1+kdc()+kdm())
}
FUNCTION ssPVmg( kdc(), kdm()) (mM) {
ssPVmg = (PVnull*kdm())/(1+kdc()+kdm())
}