-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.c
587 lines (486 loc) · 15.8 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*
Peter Latham
September, 2005
version 1
type "theta1d -h" or "theta1d" for details.
ttd:
- get rid of zap (if it really doesn't do anything).
- make file containing rate at which +- pi is crossed illegally.
- give whozap a random component.
changes:
09/05 - killed interp and nonlinearity.
removed bias (old conventions).
added t_extra and j_extra -- time of extra spike and
which neuron it occurs on, respectively.
*/
// ---headers
#include <cstdlib>
#include <fstream>
#include <strstream>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <cctype>
#include <iostream>
#include "derivs.h"
#include "network.h"
#include "params.h"
#include "float2.h"
#include "runge_kutta.h"
#include "lib.h"
#include "dpoisson.c"
// ---parameters
// ---prototypes
float* integrate(network& p, int write_on);
void spike(network& p, float t, float2& z, int& n_spiked, int* nspikes,
int* who_spiked, int* cnterr);
void update_post(network& p, float2& z, int* nspikes, int* cnterr, int j);
double** input_dist(network& p, int* l, int& n, int n_dp);
void write(int* display, int n_spiked, int no_display, float t,
int* who_spiked, int* count_total, int* aspikes, float2& z, network& p);
void count_ea(network& p);
void write_comline();
void write_filelist();
int main(int argc, char** argv)
{
// ---command line stuff
if (argc == 1) write_comline();
if (argc > 1) if (!strcmp(argv[1], "-h")) write_comline();
if (parse_comline(argc, argv, "-h", 0, 0)) write_comline();
// ---get command line flags.
struct print pr;
pr.cur = parse_comline(argc, argv, "-c", 0, 0);
pr.f = parse_comline(argc, argv, "-f", 0, 0);
pr.in = parse_comline(argc, argv, "-i", 0, 0);
pr.out = parse_comline(argc, argv, "-o", 0, 0);
pr.s = parse_comline(argc, argv, "-s", 0, 0);
pr.weights = parse_comline(argc, argv, "-w", 1, 0);
int write_on = 1-parse_comline(argc, argv, "-nowrite", 0, 0);
// ---give list of files if -f flag is present
if (pr.f) write_filelist();
// ---generate parameters. see network.c for details.
network p(argc, argv, pr);
// ---count number of endogenously active cells and print results
count_ea(p);
// ---output memories, if there are any
if (p.no_mem)
{
ofstream out_mem(cat2("eta", p.suffix));
for (int j=0; j < p.num[0]; j++)
{
for (int m=0; m < p.no_mem; m++)
out_mem << p.eta[m][j] << " ";
out_mem << endl;
}
}
// ---integrate equations of motion; return average firing rate
float* nu = integrate(p, write_on);
// write to file fc
ofstream out_fc_e(cat2("fc_e", p.suffix));
ofstream out_fc_i(cat2("fc_i", p.suffix));
for (int i=0; i < p.num[0]; i++) out_fc_e << nu[i] << endl;
for (int i=p.num[0]; i < p.neurons; i++) out_fc_i << nu[i] << endl;
// ---write average firing inhibitory and excitatory rates to file f
float nubar[2]; nubar[0] = nubar[1] = 0;
for (int i=0; i < p.neurons; i++) nubar[p.type[i]] += nu[i];
for (int i=0; i < 2; i++) nubar[i] /= (p.num[i] > 0 ? p.num[i] : 1);
ofstream out_f(cat2("f", p.suffix));
out_f << nubar[0] << " " << nubar[1] << endl;
}
float* integrate(network& p, int write_on)
{
/*
integrate equations of motion.
INPUT:
p - class containing parameters. following variablse
from that class used:
display - array telling which neurons are displayed.
dt - time step in ms.
neurons - number of neurons.
no_display - number of neurons that are displayed
suffix - suffix appended to output files.
tmax - maximum time for integrating, in ms.
tmin - starting time for integrating, in ms.
INTEGRATION VARIABLES:
z[0] - phase
z[1] - excitatory drive (I_E)
z[2] - inhibitory drive (I_I)
*/
// ---create derivs object
derivs dzdt;
// ---initialize dynamical variables. this must be done now because
// it creates dzdt.no_vars, which is used elsewhere.
float2 z;
dzdt.init_z(p, z);
// ---create runge_kutta object
runge_kutta integrator(dzdt.no_vars, p.neurons);
// ---reserve space
int* who_spiked = (int*) calloc(p.neurons, sizeof(int));
int* cnterr = (int*) calloc(2, sizeof(int));
// ---initialize spike count
int* count = (int*) calloc(p.neurons, sizeof(int));
int* count_total = (int*) calloc(3, sizeof(int));
// ---initialize parametes in class dxdt;
dzdt.set_params(p);
// ---initialize time
float t = p.tmin;
int istep = 0;
int* nspikes = (int*) calloc(p.no_mem+2, sizeof(int));
int* aspikes = (int*) calloc(p.no_mem+2, sizeof(int));
for (;;)
{
// ---exit if at end. include -dt because integrator
// increments t.
if (t > p.tmax-p.dt) break;
// --step equations of motion
integrator.rk4(dzdt, z, t, p.dt);
// ---modify parameters for any neuron that has spiked
int n_spiked;
spike(p, t, z, n_spiked, nspikes, who_spiked, cnterr);
count_total[2] = p.no_mem ? nspikes[0] : 0;
// ---write to output files and accumulate spike count
if (t >= 0)
{
// --accumulate spikes
for (int i=0; i < p.no_mem+2; i++)
aspikes[i] += nspikes[i];
// ---count spikes
count_total[0]=count_total[1]=0;
for (int i=0; i < n_spiked; i++)
{
count[who_spiked[i]]++;
count_total[p.type[who_spiked[i]]]++;
}
// ---write
if (write_on) write(p.display, n_spiked, p.no_display,
t, who_spiked, count_total, aspikes, z, p);
}
}
// ---compute average firing rate for each neuron
float* nu = new float[p.neurons];
for (int n=0; n < p.neurons; n++) nu[n] = count[n]/(p.tmax/1000);
// ---print warnings about illegally crossing thresholds
if (cnterr[0] > 0) write_warning("threshold at +pi illegally exceeded ",
cnterr[0], " times; reduce time step!");
if (cnterr[1] > 0) write_warning("threshold at -pi illegally exceeded ",
cnterr[1], " times; reduce time step!");
// ---free space
free(who_spiked);
free(cnterr);
free(count);
free(count_total);
free(nspikes);
return nu;
}
void spike(network& p, float t, float2& z, int& n_spiked, int* nspikes,
int* who_spiked, int* cnterr)
{
/*
perform various tasks if a neuron spiked
INPUT:
p - class containing parameters
t - time in ms.
z - dynamical variables
OUTPUT:
n_spiked - number of neurons that spiked on this time step
who_spiked - which neurons spiked on this time step
cnterr - cnterr[0] = number of times neurons went above +pi
cnterr[1] = number of times neurons went below -pi
z - gets updated if there is a spike
*/
// ---constants
static double pi = 4.0*atan(1.0);
static double twopi = 8.0*atan(1.0);
static int extra=1;
static int n_dp=0, n_dp_nu, nnu_in, ext_drive=0;
static double** dp = (double**) calloc(2, sizeof(double*));
static double** dp_nu;
static int* lnu_in = (int*) calloc(p.neurons, sizeof(int));
if (n_dp == 0)
{
// ---spike count distribution for neurons being zapped
n_dp=10000;
for (int i=0; i < 2; i++) dp[i] = dpoisson(p.p_zap[i], n_dp);
// ---check to see if there is external drive.
for (int i=0; i < p.neurons; i++)
ext_drive += p.nu_in[i] > 0 ? 1 : 0;
if (ext_drive)
{
// ---spike count distribution for input firing rate
n_dp_nu=1000;
dp_nu = input_dist(p, lnu_in, nnu_in, n_dp_nu);
}
}
// ---initialization
n_spiked=0;
for (int i=0; i < p.no_mem+2; i++) nspikes[i]=0;
for (int j=0; j < p.neurons; j++) if (z.x[0][j] > pi)
{
// ---keep track of who spiked
who_spiked[n_spiked++] = j;
// ---reset phase
z.x[0][j] -= twopi;
// --update post-synaptic potentials
update_post(p, z, nspikes, cnterr, j);
}
// ---extra neuron
if (t > p.t_extra && extra)
{
// --update post-synaptic potentials
update_post(p, z, nspikes, cnterr, p.j_extra);
extra=0;
}
// ---bring any phase below -pi back into range.
for (int j=0; j < p.neurons; j++)
{
if (z.x[0][j] < -pi)
{
cnterr[1]++;
z.x[0][j] += twopi*((int) (-(z.x[0][j]-pi)/twopi));
}
}
// ---external excitatory drive, if any
if (ext_drive) for (int i=0; i < p.neurons; i++) z.x[1][i] +=
p.wbar[0][p.type[i]]*dp_nu[lnu_in[i]][(int) (n_dp_nu*drand())];
// ---zap: add pi to phase.
if (p.no_mem && t >= p.t_zap_on && t < p.t_zap_off)
{
for (int i=0; i < p.num[0]; i++) if (p.who_zap[i])
z.x[1][i] += p.wbar[0][0]*dp[0][(int) (n_dp*drand())];
}
// ---dezapping: multiply phase by small constant (p.dezap) to
// bring it near 0.
if (p.no_mem && t >= p.t_dzap_on && t < p.t_dzap_off)
{
for (int i=0; i < p.num[0]; i++) if (p.who_zap[i])
z.x[2][i] += p.wbar[1][0]*dp[1][(int) (n_dp*drand())];
}
if (t >= p.t_dzap_off && p.rezap)
{
p.rezap=0;
float delta_zap = p.t_dzap_off - p.t_zap_on + p.dtzap;
p.t_zap_on += delta_zap;
p.t_zap_off += delta_zap;
p.t_dzap_on += delta_zap;
p.t_dzap_off += delta_zap;
for (int j=0; j < p.no_mem; j++)
for (int k=0; k < p.num[0]; k++) p.who_zap[k] =
p.eta[p.newzap][k] > 0 ? 1 : 0;
}
}
void update_post(network& p, float2& z, int* nspikes, int* cnterr, int j)
{
static double pi = 4.0*atan(1.0);
static double twopi = 8.0*atan(1.0);
// ---memories
if (p.no_mem)
{
if (p.type[j] == 0) for (int i=0; i < p.nwmem[j]; i++)
nspikes[p.wmem[j][i]]++;
}
// ---raw counts
nspikes[p.no_mem + p.type[j]]++;
// ---check to see if we have gone around an extra 2*pi in phase.
if (z.x[0][j] > pi)
{
cnterr[0]++;
z.x[0][j] -= twopi*((int) ((z.x[0][j]+pi)/twopi));
}
// ---loop over post-synaptic neurons
int tpre=p.type[j];
for (int m=0; m < p.wntot[j]; m++)
{
// ---update I_E or I_I, depending on type of
// presynaptic neuron.
z.x[tpre+1][p.wn[j][m]] += p.w[j][m];
}
}
double** input_dist(network& p, int* l, int& n, int n_dp)
{
/*
INPUT:
p.dt - time step, in ms.
p.dnu - rates are quantized at dnu (nu_in = integer*dnu).
p.nu_in[i] - input firing rate of neuron i.
n_dp_nu - number of elements to use in approximation of
Poisson.
OUTPUT:
l[i] - if l[i]=k, then firing rate = nu_k = integer*dnu,
i=0, ..., p.neurons-1.
n - number of elements in dp.
RETURNS:
dp_nu[l[i]][j] - probability that dp_nu[l[i]][j]=n is
(nu_k dt)^n exp(-nu_k dt)/n!. j runs from 0 to n_dp-1.
*/
// ---min and max
float numin = min(p.neurons, p.nu_in);
float numax = max(p.neurons, p.nu_in);
// ---check
if (numin < 0) write_err("numin < 0 in function input_dist.");
// ---count number of unique intervals. first make a dummy
// variable big enough for all intervals.
int ndum=(int) ((numax-numin)/p.dnu+1);
int* ldum = (int*) calloc(ndum, sizeof(int));
for (int i=0; i < p.neurons; i++)
ldum[(int) ((p.nu_in[i] - numin)/p.dnu + 0.5)]=1;
// ---count number of entries filled
n=0;
for (int i=0; i < ndum; i++) n += ldum[i];
// ---make dp
int cnt=0;
double** dp = (double**) calloc(n, sizeof(double*));
for (int i=0; i < ndum; i++) if (ldum[i])
dp[cnt++]=dpoisson(p.dt*(p.dnu*i+numin)/1000, n_dp);
// ---make l, which maps firing rate to index of dp. first
// step is to make ldum perform the mapping.
cnt=0;
for (int i=0; i < ndum; i++) ldum[i] = ldum[i] == 0 ? 0 : cnt++;
// ---now, make l
for (int i=0; i < p.neurons; i++)
l[i]=ldum[(int) ((p.nu_in[i] - numin)/p.dnu + 0.5)];
free(ldum);
return dp;
}
void write(
int* display, int n_spiked, int no_display, float t,
int* who_spiked, int* count_total, int* aspikes, float2& z, network& p)
{
/*
write output
*/
// ---first step: open output files---
// ---reserve space
static int first = 1, n_outfile=7;
static float twrite = 0;
static FILE** f = (FILE**) calloc(n_outfile, sizeof(FILE*));
static char** filename = cchar(n_outfile, 1024);
// ---names of files
sprintf(filename[0], "%s%s", "phase", p.suffix);
sprintf(filename[1], "%s%s", "i_e", p.suffix);
sprintf(filename[2], "%s%s", "i_i", p.suffix);
sprintf(filename[3], "%s%s", "v", p.suffix);
sprintf(filename[4], "%s%s", "s", p.suffix);
sprintf(filename[5], "%s%s", "rate", p.suffix);
sprintf(filename[6], "%s%s", "arate", p.suffix);
// ---open files
if (first)
{
first = 0;
for (int i=0; i < n_outfile; i++)
f[i] = fopen(filename[i], "w");
}
// ---second: output data---
// ---i is important: it keeps track of which file we are on!
int i;
// ---phase and excitatory and inhibitory drive
for (i=0; i < 3; i++)
{
fprintf(f[i], "%14.8f ", t/1000);
for (int n=0; n < no_display; n++)
fprintf(f[i], "%14.8f ", z.x[i][display[n]]);
fprintf(f[i], "\n");
}
// ---voltage. no i++ because it was incremented at end of loop.
// choose epsilon so that vmax = 20.
float vmax=20, vmin=-80;
fprintf(f[i], "%14.8f ", t/1000);
for (int n=0; n < no_display; n++)
{
int j = display[n];
double v = p.vbar + p.deltav*tan(0.5*z.x[0][j]);
v = v > vmax ? vmax : v;
v = v < vmin ? vmin : v;
fprintf(f[i], "%14.8f ", v);
}
fprintf(f[i], "\n");
// ---spike times
i++;
fprintf(f[i], "%14.8f ", t/1000);
for (int n=0; n < n_spiked; n++) fprintf(f[i], "%d ", who_spiked[n]);
fprintf(f[i], "\n");
// ---instantaneous rate. last quantity is (nu-f*nu_mem)/(1-f).
i++;
fprintf(f[i], "%14.8f %14.8f %14.8f %14.8f %14.8f\n", t/1000,
count_total[0]/(p.num[0]*p.dt/1000),
count_total[1]/(p.num[1]*p.dt/1000),
count_total[2]/(p.f*p.num[0]*p.dt/1000),
(count_total[0]-count_total[2])/((1-p.f)*p.num[0]*p.dt/1000));
// ---average rate
i++;
double tnorm_e = p.num[0]*p.t_average/1000;
double tnorm_i = p.num[1]*p.t_average/1000;
if (t > twrite)
{
twrite += p.t_average;
// ---excitatory and inhibitory rates
fprintf(f[i], "%14.8f %14.8f %14.8f", t/1000,
aspikes[p.no_mem]/tnorm_e, aspikes[p.no_mem+1]/tnorm_i);
// ---memories
for (int j=0; j < p.no_mem; j++)
fprintf(f[i], " %14.8f", aspikes[j]/(p.f*tnorm_e));
// ---CR
fprintf(f[i], "\n");
// ---zero out spikes
for (int i=0; i < p.no_mem+2; i++) aspikes[i]=0;
}
}
void count_ea(network& p)
{
/*
count number of endogenously active cells and print results
*/
int n_ea[2] = {0, 0};
for (int i=0; i < p.neurons; i++) if (p.mu[i] > 0.0) n_ea[p.type[i]]++;
fprintf(stderr, "%5i out of %6i %s\n", n_ea[0], p.num[0],
"excitatory neurons endogenously active");
fprintf(stderr, "%5i out of %6i %s\n", n_ea[1], p.num[1],
"inhibitory neurons endogenously active");
}
void write_filelist()
{
write_message("theta1f.TMP_MORE_TMP",
"\n"
"output files (followed by '.suffix', if suffix is on command line).\n"
"'e and i' means file_e contains excitatory cells, file_i contains inhibitory.\n"
"\n"
"arate - population averaged rate (Hz), averaged over t_average ms, vs time.\n"
" columns are: time (s), nu_E, nu_I, nu_j, j=1, no_mem.\n"
"eta - value of eta for each memory. not printed if no memories.\n"
"f - population averaged rates (Hz) for excitatory and inhibitory cells.\n"
"fc - firing rate (Hz) of each neuron. e and i.\n"
"i - drive versus time for displayed neurons. e and i.\n"
"mu - external drive for each cell: current (mV) and mu. e and i.\n"
"phase - phase versus time for displayed neurons.\n"
"rate - population averaged rate (Hz), averaged over 1 bin, vs time.\n"
" columns are: time (s), nu_E, nu_I, nu_mem, (nu_E - f*nu_mem)/(1-f).\n"
"s - list of who spiked on each time step.\n"
"v - voltage (mV) versus time for displayed neurons.\n"
"\n");
exit(1);
}
void write_comline()
{
write_message("theta1d.TMP_MORE_TMP",
"\n"
"command line: theta1d input [suffix] -flags\n"
"\n"
" Network of theta-neurons.\n"
" \n"
" If suffix is present (must be third argument, and not one of the\n"
" flags), '.suffix' will be appended to all output files.\n"
"\n"
" ----flags\n"
" -h: this message.\n"
" -i: list of input parameters.\n"
" -c: description of how current distribution is computed.\n"
" -s: get a sample input file that works pretty well.\n"
" -o: list of (generally dimensionless) parameters generated by the code.\n"
" -f: list of output files.\n"
" -w: if nonzero, write weights to files w_n where n is presynaptic neuron\n"
" (as specified in display). format is: n_post weight. also make\n"
" histograms with arg(-w) bins and write to files w_e and w_i. format is:\n"
" weight count [count]. w_i has one count. w_e has two: weights from\n"
" non-memory and memory neurons, respectively.\n"
"\n");
exit(1);
}