-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAXNODE75.mod
205 lines (176 loc) · 3.33 KB
/
AXNODE75.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
TITLE Motor Axon Node channels
:
: Fast Na+, Persistant Na+, Slow K+, and Leakage currents
: responsible for nodal action potential
: Iterative equations H-H notation rest = -75 mV
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX axnode75
NONSPECIFIC_CURRENT ina
NONSPECIFIC_CURRENT inap
NONSPECIFIC_CURRENT ik
NONSPECIFIC_CURRENT il
RANGE gnapbar, gnabar, gkbar, gl, ena, ek, el
RANGE mp_inf, m_inf, h_inf, s_inf
RANGE tau_mp, tau_m, tau_h, tau_s
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
gnapbar = 0.01 (mho/cm2)
gnabar = 3.0 (mho/cm2)
gkbar = 0.08 (mho/cm2)
gl = 0.007 (mho/cm2)
ena = 55.0 (mV)
ek = -85.0 (mV)
el = -85.0 (mV)
celsius (degC)
dt (ms)
v (mV)
vshift=5
vtraub=-80
ampA = 0.01
ampB = 27
ampC = 10.2
bmpA = 0.00025
bmpB = 34
bmpC = 10
amA = 1.86
amB = 21.4
amC = 10.3
bmA = 0.086
bmB = 25.7
bmC = 9.16
ahA = 0.062
ahB = 114.0
ahC = 11.0
bhA = 2.3
bhB = 31.8
bhC = 13.4
asA = 0.3
asB = -27
asC = -5
bsA = 0.03
bsB = 10
bsC = -1
}
STATE {
mp m h s
}
ASSIGNED {
inap (mA/cm2)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
mp_inf
m_inf
h_inf
s_inf
tau_mp
tau_m
tau_h
tau_s
q10_1
q10_2
q10_3
}
BREAKPOINT {
SOLVE states METHOD cnexp
inap = gnapbar * mp*mp*mp * (v - ena)
ina = gnabar * m*m*m*h * (v - ena)
ik = gkbar * s * (v - ek)
il = gl * (v - el)
}
DERIVATIVE states { : exact Hodgkin-Huxley equations
evaluate_fct(v)
mp'= (mp_inf - mp) / tau_mp
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
s' = (s_inf - s) / tau_s
}
UNITSOFF
INITIAL {
:
: Q10 adjustment
:
q10_1 = 2.2 ^ ((celsius-20)/ 10 )
q10_2 = 2.9 ^ ((celsius-20)/ 10 )
q10_3 = 3.0 ^ ((celsius-36)/ 10 )
evaluate_fct(v)
mp = mp_inf
m = m_inf
h = h_inf
s = s_inf
}
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2
v2 = v - vshift
a = q10_1*vtrap1(v2)
b = q10_1*vtrap2(v2)
tau_mp = 1 / (a + b)
mp_inf = a / (a + b)
a = q10_1*vtrap6(v2)
b = q10_1*vtrap7(v2)
tau_m = 1 / (a + b)
m_inf = a / (a + b)
a = q10_2*vtrap8(v2)
b = q10_2*bhA / (1 + Exp(-(v2+bhB)/bhC))
tau_h = 1 / (a + b)
h_inf = a / (a + b)
a = q10_3*asA / (Exp((v2-vtraub+asB)/asC) + 1)
b = q10_3*bsA / (Exp((v2-vtraub+bsB)/bsC) + 1)
tau_s = 1 / (a + b)
s_inf = a / (a + b)
}
FUNCTION vtrap(x) {
if (x < -50) {
vtrap = 0
}else{
vtrap = bsA / (Exp((x+bsB)/bsC) + 1)
}
}
FUNCTION vtrap1(x) {
if (fabs((x+ampB)/ampC) < 1e-6) {
vtrap1 = ampA*ampC
}else{
vtrap1 = (ampA*(x+ampB)) / (1 - Exp(-(x+ampB)/ampC))
}
}
FUNCTION vtrap2(x) {
if (fabs((x+bmpB)/bmpC) < 1e-6) {
vtrap2 = -bmpA*bmpC
}else{
vtrap2 = (bmpA*(-(x+bmpB))) / (1 - Exp((x+bmpB)/bmpC))
}
}
FUNCTION vtrap6(x) {
if (fabs((x+amB)/amC) < 1e-6) {
vtrap6 = amA*amC
}else{
vtrap6 = (amA*(x+amB)) / (1 - Exp(-(x+amB)/amC))
}
}
FUNCTION vtrap7(x) {
if (fabs((x+bmB)/bmC) < 1e-6) {
vtrap7 = -bmA*bmC
}else{
vtrap7 = (bmA*(-(x+bmB))) / (1 - Exp((x+bmB)/bmC))
}
}
FUNCTION vtrap8(x) {
if (fabs((x+ahB)/ahC) < 1e-6) {
vtrap8 = -ahA*ahC
}else{
vtrap8 = (ahA*(-(x+ahB))) / (1 - Exp((x+ahB)/ahC))
}
}
FUNCTION Exp(x) {
if (x < -100) {
Exp = 0
}else{
Exp = exp(x)
}
}
UNITSON