-
Notifications
You must be signed in to change notification settings - Fork 2
/
OneCellTwoOsc.ode
82 lines (64 loc) · 1.65 KB
/
OneCellTwoOsc.ode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# default: gnap=2,gcan=0.7,I=1 (SD-Burst)
# AUGUST 2010
# cell is combination of Nap and CaN burster (Can closed-cell model with ER in dendrtes)
# NaP burster is from from Butera, 1999; setting gcan=0 reproduce Butera 1999 model
# Frequency of Ca oscillations controlled by either Catot or I (larger values - faster bursting)
# units: V = mV; Cm = pF; g = uS
minf=1/(1+exp((v-vm) /sm))
ninf=1/(1+exp((v-vn) /sn))
minfp=1/(1+exp((v-vmp)/smp))
hinf=1/(1+exp((v-vh) /sh))
taun=taunb/cosh((v-vn)/(2*sn))
tauh=tauhb/cosh((v-vh)/(2*sh))
I_na=gna*minf^3*(1-n)*(v-vna)
I_k=gk*n^4*(v-Vk)
I_nap=gnap*minfp*h*(v-vna)
I_l =gl*(v-vleaks)
# Equations for CaN current
caninf =1/(1+(Kcan/C)^ncan)
I_can=gcan*caninf*(v-vna)
#Fluxes in and out of ER
# l is fraction of open IP3 channels
J_ER_in=(LL + P*( (I*C*l)/( (I+Ki)*(C+Ka) ) )^3 )*(Ce - C)
J_ER_out=Ve*C^2/(Ke^2+C^2)
Ce = (Ct - C)/sigma
# Equations
v'= (-I_k - I_na-I_nap-I_l-I_aps-I_can)/Cms
n'= (ninf-n)/taun
h'= (hinf-h)/tauh
C' = fi*( J_ER_in- J_ER_out)
l' = A*( Kd - (C + Kd)*l )
# Auxilary variables
aux Ce=Ce
aux ican=I_can
aux inaps=I_nap
#Initial conditions
v(0)=-50
n(0)=0.004
h(0)=0.33
C(0)=0.03
l(0)=0.93
# Voltage parameters
par Cms=21, I_aps=0
num vna=50,vk=-85, vleaks=-58
num vm=-34,vn=-29, vmp=-40, vh=-48
num sm=-5, sn=-4, smp=-6, sh=5
num taunb=10, tauhb=10000,
par gk=11.2, gna=28, gnap=2,gl=2.3
# Ca parameters
par Kcan=0.74, ncan=0.97,gcan=0.7
par I=1
par Ct=1.25
par fi=0.000025
num LL=0.37
par P=31000
par Ki=1.0
par Ka=0.4
par Ve=400
par Ke=0.2
par A=0.005
par Kd=0.4
par sigma=0.185
@ dt=0.1,total=10000,meth=qualrk,xp=t,yp=v
@ xlo=0,xhi=10000,ylo=-60,yhi=10.,bound=500001,maxstor=5000001
done