-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparrun.py
90 lines (78 loc) · 2.36 KB
/
parrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from common import *
h.load_file("spike2file.hoc")
idvec = h.Vector()
idvec.buffer_size(5000000)
spikevec = h.Vector()
spikevec.buffer_size(5000000)
n_spkout_files = max(nhost/64, 1) # each file contains spikes from 64 ranks
n_spkout_sort = min(n_spkout_files*8, nhost) #each file serializes from 8 ranks
# so each sorting rank gathers spikes from nhost/n_spkout_sort ranks
checkpoint_interval = 50000.
def prun(tstop):
cvode = h.CVode()
cvode.cache_efficient(1)
#pc.spike_compress(0,0,1)
pc.setup_transfer()
mindelay = pc.set_maxstep(10)
if rank == 0: print 'mindelay = %g'%mindelay
runtime = h.startsw()
exchtime = pc.wait_time()
inittime = h.startsw()
h.stdinit()
inittime = h.startsw() - inittime
if rank == 0: print 'init time = %g'%inittime
while h.t < tstop:
told = h.t
tnext = h.t + checkpoint_interval
if tnext > tstop:
tnext = tstop
pc.psolve(tnext)
if h.t == told:
if rank == 0:
print "psolve did not advance time from t=%.20g to tnext=%.20g\n"%(h.t, tnext)
break
# save spikes and dictionary in a binary format to
# make them more comprimibles
import binsave
binsave.save(params.filename, spikevec, idvec)
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
h.spike2file(params.filename, spikevec, idvec, n_spkout_sort, n_spkout_files)
runtime = h.startsw() - runtime
comptime = pc.step_time()
splittime = pc.vtransfer_time(1)
gaptime = pc.vtransfer_time()
exchtime = pc.wait_time() - exchtime
if rank == 0: print 'runtime = %g'% runtime
printperf([comptime, exchtime, splittime, gaptime])
def printperf(p):
avgp = []
maxp = []
header = ['comp','spk','split','gap']
for i in p:
avgp.append(pc.allreduce(i, 1)/nhost)
maxp.append(pc.allreduce(i, 2))
if rank > 0:
return
b = avgp[0]/maxp[0]
print 'Load Balance = %g'% b
print '\n ',
for i in header: print '%12s'%i,
print '\n avg ',
for i in avgp: print '%12.2f'%i,
print '\n max ',
for i in maxp: print '%12.2f'%i,
print ''
if __name__ == '__main__':
import common
import util
common.nmitral = 1
common.ncell = 2
import net_mitral_centric as nmc
nmc.build_net_roundrobin(getmodel())
pc.spike_record(-1, spikevec, idvec)
from odorstim import OdorStim
from odors import odors
ods = OdorStim(odors['Apple'])
ods.setup(nmc.mitrals, 10., 20., 100.)
prun(200.)
util.finish()