-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.txt
49 lines (32 loc) · 1.72 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
################################################################################
# --- General description
The model simulates spiking networks with different degrees of specific connectivity,
as described in:
Sadeh, Clopath and Rotter (PLOS ONE, 2015).
Processing of Feature Selectivity in Cortical Networks with Specific Connectivity.
Model codes contributed by Sadra Sadeh (s.sadeh@ucl.ac.uk)
Requirements: NEST, Python
[The current codes are written compatible with NEST 2.6.0 and Python 3;
efforts have been made, however, to be backward compatible.]
################################################################################
# --- List of files
[1] SpecNet_source.py
Source class / functions for simulating networks of spiking neurons
with a specified level of specific connectivity in response to oriented stimuli
[2] defaultParams.py
Default parameters for network simulations
[3] SpecNet_run.py
Runs simulations of networks with different degrees of specific connectivity
in response to different stimulus orientations
[4] SpecNet_preprocess
Sample code for preprocessing the raw results of network simulations,
e.g. to extract mean firing rates and tuning curves
################################################################################
# --- Testing the model
(i) Set the parameters of your network simulations in [2];
(ii) Run [3] to simulate the networks and save the resulting simulated data;
(iii) Use [4] to preprocess the raw data and plot example network tuning curves.
################################################################################
20170403 Sadra Sadeh fixed a small typo (line 227 of SpecNt_source.py:
fs_ei changed to fs_ie) that would have caused problem for further
extensions of the model.