-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcan2.mod
137 lines (110 loc) · 2.05 KB
/
can2.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
TITLE n-calcium channel
: n-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
v (mV)
celsius (degC)
gcanbar=.0003 (mho/cm2)
ki=.001 (mM)
cai=50.e-6 (mM)
cao = 2 (mM)
q10=5
mmin = 0.2
hmin = 3
a0m =0.03
zetam = 2
vhalfm = -14
gmm=0.1
}
NEURON {
SUFFIX can
USEION ca READ cai,cao WRITE ica
RANGE gcanbar, ica, gcan
GLOBAL hinf,minf,taum,tauh
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
gcan (mho/cm2)
minf
hinf
taum
tauh
}
INITIAL {
rates(v)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcan = gcanbar*m*m*h*h2(cai)
ica = gcan*ghk(v,cai,cao)
}
UNITSOFF
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alph(v(mV)) {
alph = 1.6e-4*exp(-v/48.4)
}
FUNCTION beth(v(mV)) {
beth = 1/(exp((-v+39.0)/10.)+1.)
}
FUNCTION alpm(v(mV)) {
alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
}
FUNCTION betm(v(mV)) {
betm = 0.046*exp(-v/20.73)
}
FUNCTION alpmt(v(mV)) {
alpmt = exp(0.0378*zetam*(v-vhalfm))
}
FUNCTION betmt(v(mV)) {
betmt = exp(0.0378*zetam*gmm*(v-vhalfm))
}
UNITSON
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
m' = (minf - m)/taum
h' = (hinf - h)/tauh
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a, b, qt
qt=q10^((celsius-25)/10)
a = alpm(v)
b = 1/(a + betm(v))
minf = a*b
taum = betmt(v)/(qt*a0m*(1+alpmt(v)))
if (taum<mmin/qt) {taum=mmin/qt}
a = alph(v)
b = 1/(a + beth(v))
hinf = a*b
: tauh=b/qt
tauh= 80
if (tauh<hmin) {tauh=hmin}
}