-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcan2.mod
131 lines (95 loc) · 1.83 KB
/
can2.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
TITLE n-calcium channel
: n-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
v (mV)
celsius (degC)
gcanbar=.0003 (mho/cm2)
ki=.001 (mM)
cai=5e-5 (mM)
cao = 2 (mM)
}
NEURON {
SUFFIX can
USEION ca READ cai,cao WRITE ica
RANGE gcanbar
GLOBAL hinf,minf,taum,tauh
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
gcan (mho/cm2)
minf
hinf
taum
tauh
}
INITIAL {
rates(v)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcan = gcanbar*m*m*h*h2(cai)
ica = gcan*ghk(v,cai,cao)
}
UNITSOFF
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alph(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
alph = 1.6e-4*exp(-v/48.4)
}
FUNCTION beth(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
beth = 1/(exp((-v+39.0)/10.)+1.)
}
FUNCTION alpm(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
}
FUNCTION betm(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
betm = 0.046*exp(-v/20.73)
}
UNITSON
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
m' = (minf - m)/taum
h' = (hinf - h)/tauh
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a
a = alpm(v)
taum = 1/(a + betm(v))
minf = a*taum
a = alph(v)
tauh = 1/(a + beth(v))
hinf = a*tauh
}