-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLCNhm_class.py
972 lines (744 loc) · 46 KB
/
LCNhm_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
"""
This script shapes the class from which our neurons will be built.
Neurons will have the following attributes:
* **MorphoName**: Morphology name, it must be one of the following: `n128`, `sup1`, `n409` or `n127`
* **MorphoData**: Dataset containing all the morphological data
* **SomaList**: List of NEURON somatic ``Sections``
* **AxonList**: List of NEURON axonic ``Sections``
* **DendList**: List of NEURON Basal dendritic ``Sections``
* **ApicList**: List of NEURON apical dendritic ``Sections``
* **SomApicList**: List of somatoapical NEURON apical dendritic ``Sections``
* **SectionsList**: List of all NEURON ``Sections``, the union of :attr:`SomaList`, :attr:`AxonList`, :attr:`DendList`, :attr:`ApicList`
* **TopolDict**: Dictionary with all topological information in the form
* **CurrentObject**: List of NEURON objects containing all current clamps information
Access to all these properties is possible by:
.. code-block:: python
Eg.:
>>> Pyramidal = neuron_class(MorphoName = CELLPROP_MORPHOLOGY,
IntrinsicFactors = IntrinsicFactors,
SynapticFactors = SynapticFactors,
CurrentFactors = CurrentFactors,
DirLocation = DIR_LOCATION )
>>> print Pyramidal.MorphoName
sup1
The way the neuron is built is following these steps:
1. **Import and set morphological data** from ./LCNhm-neurondata/``CELLPROP_MORPHOLOGY``.swc
These .swcs cointain information about the 3D structure and width of the cell.
You can obtain more morphologies on the public databas `NeuroMorpho <http://neuromorpho.org/>`_
Classification into four main morphological categories (soma, axon, basal and apical dendrites).
Every category will be compartimentalized in multiple sections, each of which will have different and specific
ion channels, synaptic inputs, diameter, spines, etc... For instance, one apical dendrite that starts on the somatoapical trunk,
will be compartimentalized in 10 sections, where the nearest section to the trunk will be thicker than the furthest.
#. **Set biophysics** (ion channels, membrane capacitance, membrane resistivity, etc...)
What ion channels to use can be chosen, as well as a factor to increase/decrease the conductance density.
See :data:`LCNhm_configurationfile.CELLPROP_INTRINSIC_IONCHS` and :data:`LCNhm_configurationfile.CELLPROP_INTRINSIC_EXPERIMENT`:
for further details.
#. **Set synapses** (excitatory/inhibitory inputs, place of synaptic boutons, maximum conductance, etc...)
Synaptic inputs can be chosen, as well as a factor to increase/decrease the maximum conductance.
See :data:`LCNhm_configurationfile.CELLPROP_SYNAPTIC_INPUTS` and :data:`LCNhm_configurationfile.CELLPROP_SYNAPTIC_EXPERIMENT`:
for further details.
#. **Set current clamp** (place, duration, intensity, etc...)
A square-pulse clamp is set according to parameters written in :ref:`LCNhm-configuration-file`.
See :data:`LCNhm_configurationfile.CURRENT_DURATION`, :data:`LCNhm_configurationfile.CURRENT_DELAY`, :data:`LCNhm_configurationfile.CURRENT_AMPLITUDES`, :data:`LCNhm_configurationfile.CURRENT_SECTION`, :data:`LCNhm_configurationfile.CURRENT_LOCATION`, for further details.
"""
import sys
import math
import warnings
import numpy as np
import pandas as pd
from neuron import h, nrn, gui
from LCNhm_functions import *
class neuron_class(object):
"""
Neurons will be built as `neuron_class` objects.
Parameters
----------
MorphoName: String
Morphology name, it must be one of the following: `n128`, `sup1`, `n409` or `n127`
Defined in :const:`LCNhm_configurationfile.CELLPROP_MORPHOLOGY`
IntrinsicFactors: List
List of all current properties
Defined in :const:`LCNhm_main.IntrinsicFactors`
SynapticFactors: List
List of all intrinsic properties
Defined in :const:`LCNhm_main.SynapticFactors`
CurrentFactors: List
List of all synaptic properties
Defined in :const:`LCNhm_main.CurrentFactors`
DirLocation: String
Precise location of the main directory
Returns
-------
``neuron_class`` object: Class object
Attributes
----------
MorphoName: String
Morphology name, it must be one of the following: `n128`, `sup1`, `n409` or `n127`
Defined in :const:`LCNhm_configurationfile.CELLPROP_MORPHOLOGY`
It is one of the :class:`neuron_class` inputs
MorphoData: csv
Dataset containing all the morphological data
It describes each morphological point with six parameters:
* ``Type``: soma (1), axon (2), Basal (3) or apical (4) dendrite
* ``x`` , ``y`` , ``z``: Spatial coordinates (in micrometers)
* ``d``: diameter (in micrometers)
* ``IDFather``: Line number of the morphological point to which is connected
See :func:`make_geometry_dictionary` to see how it is used
Source file in *../LCNhm-neurondata/ <MorphoName> .swc*
SomaList: List
List of NEURON somatic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
AxonList: List
List of NEURON axonic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
DendList: List
List of NEURON Basal dendritic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
ApicList: List
List of NEURON apical dendritic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
SomApicList: List
List of somatoapical NEURON apical dendritic ``Sections``
List can be found in *./LCNhm-neurondata/somatoapical_sections.txt*
SectionsList: List
List of all NEURON ``Sections``, the union of :attr:`SomaList`, :attr:`AxonList`, :attr:`DendList`, :attr:`ApicList`
TopolDict: Dictionary
Dictionary with all topological information in the form
[ [ SecListName[SecNumber] , Who is connected to (IDFather) , x , y , z ] ] , [...], ... ]
Eg.:
.. code-block:: python
# NEURON object name ID of father x y z
TopolDict = { SomaList[0]: ['SomaList[0]', -1, 0, 0, 0],
SomaList[1]: ['SomaList[1]', ID of SomaList[0], 0, 0, -2],
...
ApicList[9]: ['ApicList[9]', ID of ApicList[2], 0, 0, -1000]}
CurrentObject: List
List of NEURON objects containing all current clamps information
[[ Clamp object 1, Duration 1, Delay 1, Amplitude 1 ],
[ Clamp object 2, Duration 2, Delay 2, Amplitude 2 ], [...], ...... ]
Eg.:
.. code-block:: python
# Object dur del amp
CurrentObject = [ [ NEURON object at soma, 100, 0, 0],
[ NEURON object at soma, 200, 300, 0],
...
[ NEURON object at soma, 200, 1200, 0]]
"""
# Atributes and callings to methods
def __init__(self, MorphoName, IntrinsicFactors, SynapticFactors, CurrentFactors, DirLocation):
global DirLoc; DirLoc = DirLocation
# IMPORTING DATA
# ==============
# Name of the morphology
self.MorphoName = MorphoName
# Dataset containing all the morphological data
self.MorphoData = pd.read_csv('%s/LCNhm-neurondata/%s.swc'%(DirLoc,MorphoName),
names = ['Type','x','y','z','d','IDFather'],
delimiter = ' ', index_col = 0)
# SECTIONS
# ========
# Initialization and group in lists of the four main class of sections: soma, axon, Basal (dend) and apical (apic) dendrites
self.SomaList, self.AxonList, self.DendList, self.ApicList, self.SomApicList = self.init_sections(self.MorphoData)
# All sections in one list
self.SectionsList = self.SomaList+self.AxonList+self.DendList+self.ApicList
# GEOMETRY AND TOPOLOGY
# =====================
# TopolDict is the dictionary with the geometry
self.CellPosition = [0, 0, 0, 0]
self.TopolDict = self.make_geometry_dictionary(self.CellPosition, self.MorphoData)
# Making the connections
self.set_geometry(self.TopolDict)
# BIOPHYSICS
# ==========
# We define the biophysics
self.set_intrinsic_properties(IntrinsicFactors)
# SYNAPSES
# ========
self.SynapticFactors = SynapticFactors
#self.SynDict, self.synObj, self.NetConObjects = self.SetSynapses(self.SynapticFactors)
if len(SynapticFactors[0])>0: self.SynDict, self.SynObjects, self.NetConObjects = self.set_synaptic_properties(SynapticFactors)
# ICLAMP
# ======
self.CurrentObject = self.set_current_clamp(CurrentFactors)
def init_sections(self, MorphoData):
"""
Initialization and group in lists of the four main class of sections: soma, axon, Basal (dend) and apical (apic) dendrites
Parameters
----------
MorphoData: csv
:class:`neuron_class`'s :attr:`MorphoData` attribute: Dataset containing all the morphological data
It describes each morphological point with six parameters:
* ``Type``: soma (1), axon (2), Basal (3) or apical (4) dendrite
* ``x`` , ``y`` , ``z``: Spatial coordinates (in micrometers)
* ``d``: diameter (in micrometers)
* ``IDFather``: Line number of the morphological point to which is connected
See :func:`make_geometry_dictionary` to see how it is used
Source file in *../LCNhm-neurondata/ <MorphoName> .swc*
Returns
-------
SomaList: List
class:`neuron_class`'s :attr:`SomaList` attribute: List of NEURON somatic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
AxonList: List
class:`neuron_class`'s :attr:`AxonList` attribute: List of NEURON axonic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
DendList: List
class:`neuron_class`'s :attr:`DendList` attribute: List of NEURON Basal dendritic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
ApicList: List
class:`neuron_class`'s :attr:`ApicList` attribute: List of NEURON apical dendritic ``Sections``
The number of ``Sections`` is derived from :attr:`MorphoData`
SomApicList: List
class:`neuron_class`'s :attr:`SomApicList` attribute: List of somatoapical NEURON apical dendritic ``Sections``.
List can be found in `./LCNhm-neurondata/somatoapical_sections.txt`.
"""
# We count how many lines have Type 1 (SomaList)
numsoma = sum([1 for i in MorphoData.index if (MorphoData['Type'][i] == 1) and ((MorphoData['IDFather'][i] != i-1) or (MorphoData['Type'][MorphoData['IDFather'][i]] != MorphoData['Type'][i]))])
# We count how many lines have Type 2 (AxonList)
numaxon = sum([1 for i in MorphoData.index if (MorphoData['Type'][i] == 2) and ((MorphoData['IDFather'][i] != i-1) or (MorphoData['Type'][MorphoData['IDFather'][i]] != MorphoData['Type'][i]))])
# We count how many lines have Type 3 (DendList)
numdend = sum([1 for i in MorphoData.index if (MorphoData['Type'][i] == 3) and ((MorphoData['IDFather'][i] != i-1) or (MorphoData['Type'][MorphoData['IDFather'][i]] != MorphoData['Type'][i]))])
# We count how many lines have Type 4 (ApicList)
numapic = sum([1 for i in MorphoData.index if (MorphoData['Type'][i] == 4) and ((MorphoData['IDFather'][i] != i-1) or (MorphoData['Type'][MorphoData['IDFather'][i]] != MorphoData['Type'][i]))])
# We create four section lists: soma, axon, Basal and apical dendrites
SomaList = [h.Section(name = 'soma', cell = self) for i in range(numsoma)]
AxonList = [h.Section(name = 'axon', cell = self) for i in range(numaxon)]
DendList = [h.Section(name = 'dend', cell = self) for i in range(numdend)]
ApicList = [h.Section(name = 'apic', cell = self) for i in range(numapic)]
# We create a complmentary section list: somato-apical dendrite
with open(DirLoc+'/LCNhm-neurondata/somatoapical_sections.txt') as file:
SomApicList = [ApicList[[int(line.split()[1]) for line in file if (line.split()[0] == self.MorphoName)][0]]]
# Return
return SomaList, AxonList, DendList, ApicList, SomApicList
def make_geometry_dictionary(self, CellPosition, MorphoData):
"""
Make a legible dictionary from the swc ``MorphoData`` database
Parameters
----------
CellPosition: List of Floats
List of four elements
* x-, y-, z-: spatial position of the soma (in micrometers)
* angle: self-rotation around its main axis (in degrees)
MorphoData: csv
:class:`neuron_class`'s :attr:`MorphoData` attribute: Dataset containing all the morphological data
It describes each morphological point with six parameters:
* ``Type``: soma (1), axon (2), Basal (3) or apical (4) dendrite
* ``x`` , ``y`` , ``z``: Spatial coordinates (in micrometers)
* ``d``: diameter (in micrometers)
* ``IDFather``: Line number of the morphological point to which is connected
See :func:`make_geometry_dictionary` to see how it is used
Source file in *../LCNhm-neurondata/ <MorphoName> .swc*
Returns
-------
TopolDict: Dictionary
:class:`neuron_class`'s :attr:`TopolDict` attribute: Dictionary with all topological information in the form
[ [ SecListName[SecNumber] , Who is connected to (IDFather) , x , y , z ] ] , [...], ... ]
Eg.:
.. code-block:: python
# NEURON object name ID of father x y z
TopolDict = { SomaList[0]: ['SomaList[0]', -1, 0, 0, 0]
SomaList[1]: ['SomaList[1]', ID of SomaList[0], 0, 0, -2],
...
ApicList[9]: ['ApicList[9]', ID of ApicList[2], 0, 0, -1000]}
"""
# Unpack x,y,z,rotation parameters from CellPosition
X, Y, Z, SelfRotation = CellPosition
class Point(object):
"""
Each point (compartment) in the neuron will be a ``Point`` class
Attributes
----------
ID: Int
Line number in the MorphoData csv
Type: Int
NEURON ``Section`` Type: 1 (soma), 12 (axon), 3 (dend), 4 (apic)
coords:
Coordinates from the MorphoData csv, transformed by CellPosition
IDFather:
Line number in the MorphoData csv from which this compartment starts
"""
def __init__(self, ID, Type, coords, sect_num, IDFather, isFather):
self.ID = ID
# SomaList, AxonList, Basal Dendrite, Apical Dendrite
self.Type = Type
# Rotation
self.coords = np.array([math.cos(SelfRotation)*coords[0]-math.sin(SelfRotation)*coords[1],
math.sin(SelfRotation)*coords[0]+math.cos(SelfRotation)*coords[1],
coords[2],
coords[3]])
# Translation
self.coords += np.array([X, Y, Z, 0])
self.sect_num = sect_num
self.IDFather = IDFather
self.isFather = isFather
points = []
numsoma = -1
numaxon = -1
numdend = -1
numapic = -1
# List of all points
for ID in MorphoData.index:
# Type and [x,y,z,diam]
Type = MorphoData['Type'][ID]
coords = [MorphoData['x'][ID] , MorphoData['y'][ID] , MorphoData['z'][ID] , MorphoData['d'][ID]]
IDFather = MorphoData['IDFather'][ID]
# Is it a father?
isFather = True if (MorphoData['IDFather'][ID] != (ID-1)) or (MorphoData['Type'][MorphoData['IDFather'][ID]] != Type) else False
# If it is a father, we include in a new subsection of the section
if Type == 1: numsoma += 1*isFather; sect_num = numsoma # SomaList
if Type == 2: numaxon += 1*isFather; sect_num = numaxon # AxonList
if Type == 3: numdend += 1*isFather; sect_num = numdend # Basal Dendrites
if Type == 4: numapic += 1*isFather; sect_num = numapic # Apical Dendrites
# Add point to list
points.append(Point(ID, Type, coords, sect_num, IDFather, isFather ))
# Now we make the dictionary:
TopolDict = {}
# For each point:
for point in points:
# What section Type is it?
if point.Type == 1: sect = self.SomaList[point.sect_num]
elif point.Type == 2: sect = self.AxonList[point.sect_num]
elif point.Type == 3: sect = self.DendList[point.sect_num]
elif point.Type == 4: sect = self.ApicList[point.sect_num]
# If it is a father, we create a new key in the dictionary
if point.isFather:
# Point's section name
if point.Type == 1: TopolDict[sect] = ['SomaList[%d]'%point.sect_num]
elif point.Type == 2: TopolDict[sect] = ['AxonList[%d]'%point.sect_num]
elif point.Type == 3: TopolDict[sect] = ['DendList[%d]'%point.sect_num]
elif point.Type == 4: TopolDict[sect] = ['ApicList[%d]'%point.sect_num]
# The first line of the SWC has a "-1" IDFather
if point.IDFather == -1:
grandfather = False
type_grandfather = False
else:
# Where does it come from? As it is a father, grandfather is its father
ID_grandfather = point.IDFather-1 # "-1" because starts counting on 1
type_grandfather = points[ID_grandfather].Type
num_grandfather = points[ID_grandfather].sect_num
# Grandfather section
if type_grandfather == False: TopolDict[sect].append(self.SomaList[point.sect_num])
elif type_grandfather == 1:
TopolDict[sect].append(self.SomaList[num_grandfather])
TopolDict[sect].append([pt.ID for pt in points if (point.ID == pt.IDFather)][0])
elif type_grandfather == 2:
TopolDict[sect].append(self.AxonList[num_grandfather])
TopolDict[sect].append([pt.ID for pt in points if (point.ID == pt.IDFather)][0])
elif type_grandfather == 3:
TopolDict[sect].append(self.DendList[num_grandfather])
TopolDict[sect].append([pt.ID for pt in points if (point.ID == pt.IDFather)][0])
elif type_grandfather == 4:
TopolDict[sect].append(self.ApicList[num_grandfather])
TopolDict[sect].append([pt.ID for pt in points if (point.ID == pt.IDFather)][0])
# Coordinates of the Point
TopolDict[sect].append(point.coords)
else:
TopolDict[sect].append(point.coords)
# Once the dictionary is done, we erase the inapropiate dendrites listed in ./LCNhm-neurondata/dendrites_to_erase.txt
with open(DirLoc+'/LCNhm-neurondata/dendrites_to_erase.txt' ) as file:
Dend2Erase = [map(int, line.split()[1:]) for line in file if line.split()[0] == self.MorphoName][0]
self.DendList = [self.DendList[ii] for ii in range(len(self.DendList)) if ii not in Dend2Erase]
return TopolDict
def set_geometry(self, TopolDict):
"""
Set the topology and geometry from the :attr:`TopolDict` dictionary.
* First, the beginning of each ``Section`` is connected to the end of its "father" ``Section``, defined in the :attr:`MorphoData` csv
* Second, it sets each compartment position and diameter
Parameters
----------
TopolDict: Dictionary
:class:`neuron_class`'s :attr:`TopolDict` attribute: Dictionary with all topological information in the form
[ [ SecListName[SecNumber] , Who is connected to (IDFather) , x , y , z ] ] , [...], ... ]
Eg.:
.. code-block:: python
# NEURON object name ID of father x y z
TopolDict = { SomaList[0]: ['SomaList[0]', -1, 0, 0, 0]
SomaList[1]: ['SomaList[1]', ID of SomaList[0], 0, 0, -2],
...
ApicList[9]: ['ApicList[9]', ID of ApicList[2], 0, 0, -1000]}
"""
for key in TopolDict.keys():
# The first section (SomaList[0]) doesn't need to be connected
if key != self.SomaList[0]:
key.connect(TopolDict[key][1])
# Once all sections are connected, we define its position and diameter:
h.pop_section()
for key in TopolDict.keys():
if key in self.SomApicList:
numsegs = 15
key.push()
h.pt3dclear()
pointList = []
for i in range(3, len(TopolDict[key])):
# If it's a list, then add that 3d point
pointList.append([TopolDict[key][i][0], TopolDict[key][i][1], TopolDict[key][i][2], TopolDict[key][i][3]])
ID_compartment = np.array([float(i)/numsegs for i in range(numsegs) ])*len(pointList)
for idc in ID_compartment:
xi, yi, zi, di = pointList[int(idc)]
h.pt3dadd(xi, yi, zi, di)
h.pop_section()
key.nseg = numsegs
continue
else:
key.push()
h.pt3dclear()
pointList = []
for i in range(3, len(TopolDict[key])):
# If it's a list, then add that 3d point
pointList.append([TopolDict[key][i][0], TopolDict[key][i][1], TopolDict[key][i][2], TopolDict[key][i][3]])
if len(pointList) < 2: numsegs = 1
else: numsegs = 3
ID_compartment = np.array([float(i)/numsegs for i in range(numsegs) ])*len(pointList)
for idc in ID_compartment:
xi, yi, zi, di = pointList[int(idc)]
h.pt3dadd(xi, yi, zi, di)
h.pop_section()
key.nseg = numsegs
def set_intrinsic_properties(self, IntrinsicFactors):
"""
Set intrinsic properties: set axial resistance, fill the neuron's surface with ion channels, and set their dynamical parameters
Final factors are defined as the multiplication of the *individual* factor by the *experiment* factor, so that
.. code-block:: python
FinalFactors = FactorsIndividual * FactorsExperiment
fNa, fA, fAHPs, fC, fKDR, fM, fCaL, fCaT, fHCN, fL, Ra = FinalFactors
It is crucial to set the *individual* and *experiment* factors in the required order
Parameters
----------
IntrinsicFactors: List
:class:`neuron_class`'s :data:`LCNhm_main.IntrinsicFactors` input: List of all intrinsic properties
* :data:`LCNhm_configurationfile.CELLPROP_INTRINSIC_IONCHS`: Ion channels to include in the cell
* :data:`LCNhm_configurationfile.CELLPROP_INTRINSIC_EXPERIMENT`: Additional factor multiplying the following maximum conductances and axial resistance
* :data:`LCNhm_configurationfile.CELLPROP_INTRINSIC`: Number of the intrinsic genetic-algorithm `individual`
"""
# CELLPROP_INTRINSIC_IONCHS as IonChannels
# CELLPROP_INTRINSIC_EXPERIMENT as FactorsExperiment
# CELLPROP_INTRINSIC as FactorsNum
IonChannels, FactorsExperiment, FactorsNum = IntrinsicFactors
# Get 'individual' factors
with open(DirLoc+'/LCNhm-neurondata/intrinsic_individuals.txt') as file:
FactorsIndividual = map(float, [line.split() for k, line in enumerate(file) if k==(FactorsNum-1) ][0])
# Multiplication of the 'individual' factor by the 'experiment' factor
FinalFactors = [ FactorsIndividual[ii] * FactorsExperiment[ii] for ii in range(len(FactorsExperiment))]
# Separate all different factors
fNa, fA, fAHPs, fC, fKDR, fM, fCaL, fCaT, fHCN, fL, Ra = FinalFactors
# Somatic z-position (along radial axis)
zSoma = h.z3d(0,sec=self.SomaList[0])
# Intrinsic Passive Properties
for sect in self.SectionsList:
sect.insert('pas')
sect.insert('extracellular')
sect.insert('iL')
for seg in range(sect.nseg):
loc = float(seg+1)/(sect.nseg+1) # Location in segment
sect.Ra = Ra # Internal resistivity (Ra), in Ohm*cm
sect.e_pas = -50 # Membrane rest potential
sect(loc).gl_iL = 0.0025*fL # Leak conductance
SS = gradient_spine_scale(zDistance=h.z3d(seg,sec=sect)-zSoma, Diameter=h.diam3d(seg,sec=sect)) # Spine scale
sect.cm = 5 if sect in self.SomaList else 1.8*5*SS # Membrane capacitance (microFarad/cm2)
# Specific membrane resistivity (Rm), or passive conductivity (gpas)
if sect in self.SomaList:
sect(loc).g_pas = 1./gradient_membrane_resistance(0.0) # S/cm2
elif sect in self.DendList+self.AxonList:
sect(loc).g_pas = SS/gradient_membrane_resistance(0.0) # S/cm2
else:
sect.g_pas = SS/gradient_membrane_resistance(h.z3d(0,sec=sect)-zSoma) # S/cm2
# HCN channels
if 'hcn' in IonChannels:
for sect in self.ApicList:
sect.insert('hcn')
sect.ehcn_hcn = -30.
sect.Ft_hcn = 1.
zDistance = h.z3d(0,sec=sect)-zSoma
sect.ghcn_hcn = gradient_gHCN(zDistance)*fHCN # S/cm2
sect.V12_hcn = gradient_V12(zDistance) # mV
# A-Type K+ channels. Potassium conductance in S/cm2
if 'iA' in IonChannels:
for sect in self.SomaList+self.DendList+self.ApicList: sect.insert('iA')
for sect in self.SomaList: sect.gkbar_iA = 0.0025*fA
for sect in self.DendList: sect.gkbar_iA = 0.0600*fA
for sect in self.ApicList: sect.gkbar_iA = 0.0600*fA
# CA2+ dependent slow AHP K+ conductance. Potassium conductance in S/cm2
if 'iAHPs' in IonChannels:
for sect in self.SomaList+self.DendList+self.ApicList: sect.insert('iAHPs')
for sect in self.SomaList: sect.gkbar_iAHPs = 0.0005*5*fAHPs
for sect in self.DendList: sect.gkbar_iAHPs = 0.0005*fAHPs
for sect in self.ApicList: sect.gkbar_iAHPs = 0.0005*fAHPs
# short-duration [Ca]- and voltage-dependent current. Potassium conductance in S/cm2
if 'iC' in IonChannels:
for sect in self.SomaList+self.DendList+self.ApicList: sect.insert('iC')
for sect in self.SomaList: sect.gkbar_iC = 0.09075*fC
for sect in self.DendList: sect.gkbar_iC = 0.03300*fC
for sect in self.ApicList:
if h.z3d(0,sec=sect)-zSoma <= 200.: sect.gkbar_iC = 0.03300*fC
elif h.z3d(0,sec=sect)-zSoma <= 350.: sect.gkbar_iC = 0.00410*fC
# Short-duration [Ca]- and voltage-dependent current. Calcium conductance in S/cm2
if 'iCaL' in IonChannels:
for sect in self.SomaList: sect.insert('iCaLs')
for sect in self.DendList+self.ApicList: sect.insert('iCaLd')
for sect in self.SectionsList: sect.insert('cad')
for sect in self.SomaList: sect.gcalbar_iCaLs = 0.000700000*fCaL; sect.tau_cad = 50
for sect in self.DendList: sect.gcalbar_iCaLd = 0.000031635*fCaL; sect.tau_cad = 20
for sect in self.ApicList: sect.gcalbar_iCaLd = 0.000031635*fCaL; sect.tau_cad = 20
for sect in self.AxonList: sect.tau_cad = 20
# Short-duration [Ca]- and voltage-dependent current. Calcium conductance in S/cm2
if 'iCaT' in IonChannels:
for sect in self.SomaList+self.DendList+self.ApicList: sect.insert('iCaT')
for sect in self.SectionsList: sect.insert('cad')
for sect in self.SomaList: sect.gcatbar_iCaT = 0.00005*fCaT; sect.tau_cad = 50
for sect in self.DendList: sect.gcatbar_iCaT = 0.00001*fCaT; sect.tau_cad = 20
for sect in self.ApicList: sect.gcatbar_iCaT = 0.00001*fCaT; sect.tau_cad = 20
for sect in self.AxonList: sect.tau_cad = 20
# Delay rectifier current. Potassium conductance in S/cm2
if 'iKDR' in IonChannels:
for sect in self.SectionsList: sect.insert('iKDR')
for sect in self.SomaList: sect.gkbar_iKDR = 0.001400*fKDR
for sect in self.AxonList: sect.gkbar_iKDR = 0.020000*fKDR
for sect in self.DendList: sect.gkbar_iKDR = 0.000868*fKDR
for sect in self.ApicList: sect.gkbar_iKDR = 0.000868*fKDR
# Slowly activating voltage-dependent potassium current. Potassium conductance in S/cm2
if 'iM' in IonChannels:
for sect in self.SectionsList: sect.insert('iM')
for sect in self.SomaList: sect.gkbar_iM = 0.06*fM
for sect in self.AxonList: sect.gkbar_iM = 0.03*fM
for sect in self.DendList: sect.gkbar_iM = 0.06*fM
for sect in self.ApicList: sect.gkbar_iM = 0.06*fM
# Sodium conductance. Sodium conductance in S/cm2
if 'iNas' in IonChannels:
for sect in self.SectionsList: sect.insert('iNas')
for sect in self.SomaList: sect.gnabar_iNas = 0.007*10*fNa; sect.Frec_iNas = 1.0
for sect in self.AxonList: sect.gnabar_iNas = 0.007*10*fNa; sect.Frec_iNas = 1.0
for sect in self.DendList: sect.gnabar_iNas = 0.007*fNa; sect.Frec_iNas = 1.0
for sect in self.ApicList: sect.gnabar_iNas = 0.007*fNa; sect.Frec_iNas = 1.0
def set_synaptic_properties(self, SynapticFactors):
"""
Set synaptic properties written in
*../LCHhm-neurondata/synaptic_properties.txt* (Bezaire2016)
Each line of the file has a list of all the necessary
properties to configure synapses. Let's take a line as
an example:
Eg.: (1) **CA3** (2) **6209** (3) **4** (4) **50** (5) **300** (6) **1.5** (7) **0** (8) **0.5** (9) **3** (10) **0.0002** (11) **0.5** (12) **276** (13) **5** (14) **3**
These parameters are, in order:
1. Name of input.
Eg.: CA3
2. Number of NumBoutons.
Eg.: 6209
3. Type of ``Sections`` where to place NumBoutons.
Eg.: 4, that is apical dendrites
4. Minimum distance to soma (positive to apical, negative to Basal).
Eg.: 50 um from soma, that would be proximal SR
5. Maximum distance to soma (positive to apical, negative to Basal).
Eg.: 300 um from soma, that would be distal SR
6. Firing frequency (Hz).
Eg.: 1.5 Hz
7. Reversal potential (mV). Near 0mV would correspond to a glutamatergic input, while a -70mV to a GABAergic one.
Eg.: 0 mV, that is excitatory
8. Raising time constant (ms).
Eg.: 0.5 ms
9. Decaying time constant (ms).
Eg.: 3.0 ms
10. Maximum conductance (microsiemens, uS). This is later multiplied by the ``FinalFactors`` defined from the ``FactorsIndividual`` and the ``Experimental``.
Eg.: 0.0002 uS
11. Basal firing of the synaptic time probability distribution.
Eg.: 0.5
12. Theta Phase of maximum spiking probability.
Eg.: 276 deg
13. Left-shifting factor of the synaptic time probability distribution (A in the picture).
Eg.: 5
14. Right-shifting factor of the synaptic time probability distribution (B in the picture).
Eg.: 3
The last four parameters define the synaptic time probability distribution
through the :func:`LCNhm_functions.synaptic_time_probability_distribution`,
an asymmetric gaussian function. An example of the synaptic time probability
distribution alon 10 theta cycles, and a visual definition of the
``Basal``, ``A`` and ``B`` parameters are shown in the image:
.. image:: ../sphinx-docs/_images/SynapseDistribution.png
In the case that :func:`LCNhm_configurationfile.SIMPROP_THETA_MODE` is ``False``,
the distribution will be homogeneous along time, being (6), the firing frequency,
the only parameter that will be taken into account.
So for each excitatory/inhibitory input:
1. An amount of (2) boutons are placed randomly along the neuron surface from (5) to (6)
2. Synapse internal dynamics are set given (7), (8), (9), (10) and (11)
3. Synapses are activated randomly with the probability distribution given by :func:`LCNhm_functions.synaptic_time_probability_distribution`
Final factors are defined as the multiplication of the *individual* factor by the *experiment* factor, so that
.. code-block:: python
FinalFactors = FactorsIndividual * FactorsExperiment
fNa, fA, fAHPs, fC, fKDR, fM, fCaL, fCaT, fHCN, fL, Ra = FinalFactors
It is crucial to set the *individual* and *experiment* factors in the required order
Parameters
----------
SynapticFactors: List
* :const:`LCNhm_configurationfile.CELLPROP_SYNAPTIC_INPUTS` : Synaptic inputs to include in the cell
* :const:`LCNhm_configurationfile.CELLPROP_SYNAPTIC_EXPERIMENT` : Additional factor multiplying the following maximum conductances
* :const:`LCNhm_configurationfile.SIMPROP_THETA_MODE` : Set theta (``True``) or not (``False``)
* :const:`LCNhm_configurationfile.SIMPROP_THETA_PERIOD` : Theta period in milliseconds
* :const:`LCNhm_configurationfile.SIMPROP_START_TIME` : Lapse of time before starting the simulation in milliseconds
* :const:`LCNhm_configurationfile.SIMPROP_END_TIME` : Total duration of the simulation in milliseconds (:const:`LCNhm_configurationfile.SIMPROP_START_TIME` + :const:`LCNhm_configurationfile.SIMPROP_SIM_TIME`)
Returns
-------
SynDict: Dictionary
Dictionary with information of all synapses. For each input in :const:`LCNhm_configurationfile.CELLPROP_SYNAPTIC_INPUTS`,
* ``SynSection``: NEURON ``Section`` and ``Location`` for each bouton
* ``SynPlaces``: Three spatial coordinates for each bouton
* ``SynTimes``: Time releases for each bouton
is stored
SynObjects: List
NEURON synaptic ``Exp2Syn`` objects (go to `Exp2Syn <https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/mech.html?highlight=exp2syn#Exp2Syn>`_ for more information)
NetConObjects: List
NEURON synaptic ``NetCon`` objects (go to `NetCon <https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/network/netcon.html?highlight=netcon>`_ for more information)
"""
# CELLPROP_SYNAPTIC_INPUTS as SynInputs
# CELLPROP_SYNAPTIC_EXPERIMENT as FactorsExperiment
# SIMPROP_THETA_MODE as isTheta
# SIMPROP_THETA_PERIOD as ThetaPeriod
# SIMPROP_START_TIME as tini
# SIMPROP_END_TIME as tend
# Unpack list of synaptic properties
SynInputs, FactorsExperiment, isTheta, ThetaPeriod, tini, tend, dt, FactorsNum = SynapticFactors
if (tend-tini)<1.5*ThetaPeriod: warnings.warn('Warning: simulation lasts less than 1.5 times SIMPROP_THETA_PERIOD.')
# Get 'individual' factors
with open(DirLoc+'/LCNhm-neurondata/synaptic_individuals.txt') as file:
FactorsIndividual = map(float, [line.split()[1:] for line in file if line.split()[0]==str(FactorsNum) ][0])
# FinalFactors: Multiplication of the 'individual' factor by the 'experiment' factor
FinalFactors = { SynInputs[ii] : (FactorsIndividual[ii]*FactorsExperiment[ii]) for ii in range(len(SynInputs)) }
# Posible Sections into which set the synapses
OtherApical = [ii for ii in self.ApicList if ii not in self.SomApicList]
PosibleSections = [self.SomaList, self.AxonList, self.DendList, self.ApicList, self.SomApicList, OtherApical]
# Position of soma
xyzSoma = np.array([h.x3d(0,sec=self.SomaList[0]), h.y3d(0,sec=self.SomaList[0]), h.z3d(0,sec=self.SomaList[0])])
zSoma = xyzSoma[2]
# Initialize Returns
SynDict = {}
SynObjects = []
NetConObjects = []
if sum(FactorsIndividual)>0.:
# Reading properties of synapses from file
with open(DirLoc+'/LCNhm-neurondata/synaptic_properties.txt') as file:
for line in file:
# Get and set parameters
# ----------------------
# Get parameters of synapses
SynInput = line.split()[0]
if SynInput in SynInputs:
NumBoutons, SynSection, Zmin, Zmax, FiringFreq, Erev, Tau1, Tau2, Gmax, Basal, Phase, BetaA, BetaB = map( float, line.split()[1:] )
# Make new key
if SynInput not in SynDict.keys():
SynDict[SynInput] = {}
SynDict[SynInput]['SynSection'] = []
SynDict[SynInput]['SynPlaces'] = []
SynDict[SynInput]['SynTimes'] = []
# Make Int values
SynSection, NumBoutons = int(SynSection), int(NumBoutons)
# Number of synapse relases
NumSynapses = FiringFreq*((tend-tini)/1000.)
# Multiply maximal conductance by the FinalFactor
Gmax *= FinalFactors[SynInput]
# Selecting places
# ----------------
# PossiblePoints: list of all [Section, Location, 3D-coords, z-coord] of the neuron between Zmin and Zmax
PossiblePoints = []
for sec in PosibleSections[SynSection-1]:
for seg in range(sec.nseg):
loc = float(seg+1)/(sec.nseg+1)
if (h.z3d(seg,sec=sec)-zSoma)>=Zmin and (h.z3d(seg,sec=sec)-zSoma)<=Zmax:
xyz3d = np.array([h.x3d(seg,sec=sec), h.y3d(seg,sec=sec), h.z3d(seg,sec=sec)])
PossiblePoints.append([sec, loc, xyz3d, xyz3d[2]])
PossiblePoints = np.array(PossiblePoints)
if len(PossiblePoints)>0:
Zs = PossiblePoints[:,3].astype(float)
# Gaussian distribution around the mean ((Zmin+Zmax)/3.), and normalized to (Zmin+Zmax)/6.
PlaceDistribution = np.exp( -(Zs-(Zmin+Zmax)/3.)**2 / np.max([10, (Zmin+Zmax)/6.])**2)
PlaceDistribution /= sum(PlaceDistribution)
# Pick random NumBoutons PossiblePoints, according to PlaceDistribution
#SynPlaces = PossiblePoints[ np.in1d( Zs, np.random.choice(Zs, p=PlaceDistribution, size=NumBoutons)) ]
#SynPlaces = np.array(SynPlaces)
# Pick random NumBoutons PossiblePoints, according to the distribution, where to set the synapse (boutons)
SynPlaces = [PossiblePoints[ np.where( Zs==iz )[0][0]] for iz in np.random.choice(Zs, p=PlaceDistribution, size=NumBoutons)]
SynPlaces = np.array(SynPlaces)
# Selecting times
# ---------------
# Possible times between 'tini' and 'tend'
PossibleTimes = np.arange(tini, tend, dt)
# Synaptic time distribution
if isTheta:
# If we are in theta mode, no-homogeneous distribution (given by synaptic_time_probability_distribution)
TimeDistribution = synaptic_time_probability_distribution(PossibleTimes, Phase, [ThetaPeriod,BetaA,BetaB])
else:
# If we are not in theta mode, homogeneous distribution
TimeDistribution = np.ones(len(PossibleTimes))/len(PossibleTimes)
# Randomness in amount of number of synapses per bouton
NumSynRand = 2.*NumSynapses*np.random.random(len(SynPlaces))
# Setting synapses
# ----------------
for iBoutons in range(len(SynPlaces)):
# Synapse place
sec = SynPlaces[iBoutons][0] # Section
loc = SynPlaces[iBoutons][1] # Location
xyzSec = SynPlaces[iBoutons][2]
# Making GLUTAMATE/GABA A synapse at that place
SynObjects.append(h.Exp2Syn(sec(loc)))
SynObjects[-1].e = Erev # (mV)
SynObjects[-1].tau1 = Tau1 # (ms)
SynObjects[-1].tau2 = Tau2 # (ms)
# Taking spiking times from the above distribution
SynTimes = np.sort(np.random.choice(PossibleTimes, size=int(NumSynRand[iBoutons]), p=TimeDistribution))
# Making the synapse object
for tsyn in SynTimes:
# Connecting the synapse Object with the 'stimulator' NetCon
NetConObjects.append(h.NetCon(self.SomaList[0](0)._ref_v, SynObjects[-1], sec=self.SomaList[0]))
NetConObjects[-1].delay = tsyn # ms
NetConObjects[-1].threshold = -1000 # mV
NetConObjects[-1].weight[0] = Gmax*(1 + (np.linalg.norm(xyzSec - xyzSoma)>240)) # uS (double on distal locations)
# Saving for future writing
SynDict[SynInput]['SynSection'].append([sec,loc])
SynDict[SynInput]['SynPlaces'].append(xyzSec)
SynDict[SynInput]['SynTimes'].append(SynTimes)
return SynDict, SynObjects, NetConObjects
def set_current_clamp(self, CurrentFactors):
"""
Set current clamp
Parameters
----------
CurrentFactors: List
:class:`neuron_class`'s :data:`LCNhm_main.IntrinsicFactors` input: List of properties for all desired current pulses
* :const:`LCNhm_configurationfile.CURRENT_DURATION`
List of durations of each current pulse in milliseconds
* :const:`LCNhm_configurationfile.CURRENT_DELAY`
List of delays of each current pulse in milliseconds
* :const:`LCNhm_configurationfile.CURRENT_AMPLITUDES`
List of amplitudes of each current pulse in nanoampers (nA)
* :const:`LCNhm_configurationfile.CURRENT_SECTION`
List of sections of each current pulse
* :const:`LCNhm_configurationfile.CURRENT_LOCATION`
List of location along the defined :const:`LCNhm_configurationfile.CURRENT_SECTION` of each current pulse
Their length must be the same, the number of different current clamps
Click any of the links for further information
Returns
-------
CurrentObject: List
:class:`neuron_class`'s :attr:`CurrentObject` attribute: List of NEURON objects containing all current clamps information
[[ Clamp object 1, Duration 1, Delay 1, Amplitude 1 ],
[ Clamp object 2, Duration 2, Delay 2, Amplitude 2 ], [...], ...... ]
Eg.:
.. code-block:: python
# Object dur del amp
CurrentObject = [ [ NEURON object at soma, 100, 0, 0],
[ NEURON object at soma, 200, 300, 0],
...
[ NEURON object at soma, 200, 1200, 0]]
"""
# Unpack all current parameters
Durations, Delays, Amplitudes, Sections, Locations = CurrentFactors
current = []
for clamp in range(len(Durations)):
current.append([])
Section = Sections[clamp]
Location = Locations[clamp]
if Section[:8] == 'SomaList': Section = self.SomaList[int(Section[8:])]
elif Section[:8] == 'ApicList': Section = self.ApicList[int(Section[8:])]
elif Section[:8] == 'DendList': Section = self.DendList[int(Section[8:])]
elif Section[:8] == 'AxonList': Section = self.AxonList[int(Section[8:])]
current[-1] = h.IClamp(Section(Location))
current[-1].dur = Durations[clamp] # ms
current[-1].delay = Delays[clamp] # ms
current[-1].amp = Amplitudes[clamp] # nA
return current