-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLCNhm_functions.py
473 lines (377 loc) · 17.7 KB
/
LCNhm_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
"""
This script has all functions except from the :ref:`LCNhm-class` and its methods.
Within its miscellaneous purposes, there are:
* One function naming and making the folder: ``make_folder``
* Functions related to how to distribute intrinsic properties along the cell: ``gradient_membrane_resistance``, ``gradient_spine_scale``, ``gradient_V12`` and ``gradient_gHCN``
* Function of how to distribute the synaptic releases along a theta cycle: ``synaptic_time_probability_distribution``
* Functions that record and save data from the simulation: ``recordings``, ``save_spiking_times``, ``save_recordings`` and ``save_parameters``
Functions and descriptions
--------------------------
"""
import os
import sys
import datetime
import numpy as np
from neuron import h, nrn, gui
def make_folder(DIR_LOCATION, OPT_FOLDER_NAME):
"""
Make a new folder inside *DIR_LOCATION/LCNhm-results/* to save any new simulation.
``< D(ate)YearMonthDay _ T(ime)HourMinute _ OptionalFolderName >``
Parameters
----------
DIR_LOCATION: String
Name of main directory, where *LCNhm_main.py* is
Defined in :const:`LCNhm_configurationfile.DIR_LOCATION`
OPT_FOLDER_NAME: String
Optional folder name: additional description of the simulation.
Defined in :const:`LCNhm_configurationfile.OPT_FOLDER_NAME`
Eg.: *first_test*, *high_CA3*, *inhibition_suppression*
Returns
-------
FOLDER_NAME: String
Name of the folder just made.
"""
# Today's date and time
Date = [ datetime.datetime.today().year,
datetime.datetime.today().month,
datetime.datetime.today().day,
datetime.datetime.today().hour,
datetime.datetime.today().minute ]
# Name of folder: <D(ate)YearMonthDay_T(ime)HourMinute_OptionalFolderName>
FOLDER_NAME = 'D%.2d%.2d%.2d_T%.2d%.2d'%tuple(Date) + '_' * (len(OPT_FOLDER_NAME)>0) + OPT_FOLDER_NAME
FolderLen = len(FOLDER_NAME)
# Make a new directory
dirFolderName = DIR_LOCATION+'/LCNhm-results/'+FOLDER_NAME
# If folder doesnt exist, make a new one; if it exists, add a suffix
k = 1
while os.path.exists(dirFolderName):
FOLDER_NAME = FOLDER_NAME[:FolderLen] + '_%.3d'%k
dirFolderName = DIR_LOCATION+'/LCNhm-results/'+FOLDER_NAME
k += 1
# Make new folder
os.makedirs(dirFolderName)
return dirFolderName
def gradient_membrane_resistance(zDistance):
"""
Definition of the membrane resistivity along the *z* axis (radial axis)
Parameters
----------
zDistance: Float
Distance to soma on the *z* axis (radial axis)
Returns
-------
MembraneResistance: Float
Membrane resistance (ohm*cm2) at :data:`zDistance`
"""
# Conductance: gm = 1/Rm [S/cm2]
# Rm = 1/gm [Ohm*cm2]
kohm2ohm = 1000
MembraneResistance = kohm2ohm*(80. + (0.4-80.)/(1+np.exp((225-zDistance)/30.))) # ohm * cm2
return MembraneResistance
def gradient_spine_scale(zDistance, Diameter):
"""
Definition of the spine scale factor along the *z* axis (radial axis)
To take into account the spines intrinsic properties such as the
capacitance and the membrane resistance must be multiplied by a factor SS
Parameters
----------
zDistance: Float
Distance to soma on the *z* axis (radial axis)
Diameter: Float
Diameter of compartiment (um)
Returns
-------
SS: Float
Spine scale factor
"""
# Str Lacunosum Moleculare
if zDistance>350:
if (Diameter>0.35): SS = 2.10 # Medium
else: SS = 1.71 # Thin
# Str Radiatum
elif (zDistance<= 350) and (zDistance>0):
if Diameter>1.6: SS = 1.69 # Thick medial
elif (Diameter<=1.6) and (Diameter>0.55): SS = 1.60 # Thick distal
elif (Diameter<0.55): SS = 1.86 # Thin
else: SS = 1
# Str Oriens
elif zDistance<0: SS = 2.51
else: SS = 1
return SS
def gradient_V12(zDistance):
"""
Definition of the HCN half-maximal activation voltage (V1/2) factor along the *z* axis (radial axis) (Sinha2015)
Parameters
----------
zDistance: Float
Distance to soma on the *z* axis (radial axis)
Returns
-------
v12: Float
Half-maximal activation voltage (mV)
"""
v12 = -82*(zDistance<300) - (0.04*zDistance-0.04*100)*(zDistance>100 and zDistance<300) - 90*(zDistance>=300) # mV
return v12
def gradient_gHCN(zDistance):
"""
Definition of the HCN maximum conductance along the *z* axis (radial axis) (Sinha2015)
Parameters
----------
zDistance: Float
Distance to soma on the *z* axis (radial axis)
Returns
-------
gHCN: Float
Maximumn HCN conductance (S/cm2)
"""
ghcnBase = 85.e-6 # S/cm2
gHCN = ghcnBase*(1+120./(1. + np.exp((275.-zDistance)/50.)) ) # S/cm2
return gHCN
def synaptic_time_probability_distribution(Times, PhaseMax, Parameters):
"""
Definition of the synaptic probability distribution along theta phase.
In this case, the distribution chosen is the asymmetric gaussian (beta function),
described as:
.. code-block:: python
beta(x,A,B) = x^(A-1) * (1-x)^(B-1)
Parameters
----------
Times: Numpy array
Times to whom compute the firing probability function
PhaseMax: Float
Phase of maximum probability
Parameters: List
List of parameters.
In this case, ``Parameters = [A, B]`` will define the shift of the gaussian distribution
to the left or to the right.
Returns
-------
ProbDistribution: Numpy array
Spiking probability distribution for ``Times``
"""
# Unpack parameters
ThetaPeriod, A, B = Parameters
# Phases
Phases = np.mod(Times,ThetaPeriod)/ThetaPeriod
dPh = Phases[1]-Phases[0]
# Phase (desired position of the maximum)
PhaseMax = np.argwhere(np.abs(Phases-PhaseMax/360.)<=(Phases[1]-Phases[0]))[0,0]
# Actual position of the maximum
Phasesmax = np.argmax(Phases**(A-1.)*(1-Phases)**(B-1.))
while dPh*(Phasesmax-PhaseMax)>1:
Phasesmax -= int(1./dPh)
# Shifting the distribution
idx = 1+dPh*(Phasesmax-PhaseMax)
Phases2 = np.mod(np.array([Phases[-1]+i*dPh for i in np.arange(int(idx/dPh))]) , 1)
Phases = Phases[int(idx/dPh):]
ProbDistribution = np.append(Phases**(A-1.)*(1-Phases)**(B-1.), Phases2**(A-1.)*(1-Phases2)**(B-1.) )
ProbDistribution /= sum(ProbDistribution)
return ProbDistribution
def recordings(Pyramidal, RECORDING_MAGNITUDE, RECORDING_SECTION, RECORDING_LOCATION):
"""
Recordings are set.
Parameters
----------
Pyramidal: :class:`LCNhm_class.neuron_class` object
RECORDING_MAGNITUDE: List of `str`
Physical magnitudes to be measured and recorded
Defined in :const:`LCNhm_configurationfile.RECORDING_MAGNITUDE`
RECORDING_SECTION: List of `str`
Sites/Sections to be measured and recorded
Defined in :const:`LCNhm_configurationfile.RECORDING_SECTION`
RECORDING_LOCATION: List of Floats
Location along the defined :const:`RECORDING_SECTION` to be measured and recorded
Defined in :const:`LCNhm_configurationfile.RECORDING_LOCATION`
Returns
-------
Recordings: Dictionary
Dictionary with all recordings
Eg.: Given the following inputs, the Recordings Dictionary would be
.. code-block:: python
RECORDING_MAGNITUDE = ['Time','Vmem','Pos']
RECORDING_SECTION = ['SomaList0','ApicList0','ApicList0','ApicList0']
RECORDING_LOCATION = [0.0, 0.2, 0.5, 0.9]
Recordings = { 'Time': record object
'Vmem': { 'SomaList0_000': record object,
'ApicList0_020': record object,
'ApicList0_050': record object,
'ApicList0_090': record object},
'Imem': { 'SomaList0_000': record object,
'ApicList0_020': record object,
'ApicList0_050': record object,
'ApicList0_090': record object} }
"""
# If it's empty, record Soma for Spike times, but don't save it
if len(RECORDING_MAGNITUDE) == 0:
RECORDING_MAGNITUDE = ['Vmem']
RECORDING_SECTION = ['SomaList0']
RECORDING_LOCATION = [0.0]
# Initialize variable
Recordings = {}
for Mag in RECORDING_MAGNITUDE:
Recordings[Mag] = {}
# Time
Recordings['Time'] = h.Vector()
Recordings['Time'].record( h._ref_t )
# Magnitudes to be recorded
for Mag in RECORDING_MAGNITUDE:
# Sections defined in RECORDING_SECTION
for ii, Section in enumerate(RECORDING_SECTION):
# Get section object
sec = getattr(Pyramidal,Section[:8])[int(Section[8:])]
loc = RECORDING_LOCATION[ii]
seg = np.floor(loc*sec.nseg)
SecName = '%s_%.3d'%(Section,loc*100)
if Mag!='Time':
Recordings[Mag][SecName] = h.Vector()
if Mag=='Vmem': Recordings[Mag][SecName].record( sec( loc )._ref_v )
if Mag=='Imem': Recordings[Mag][SecName].record( sec( loc )._ref_i_membrane )
if Mag=='Pos': Recordings[Mag][SecName] = [h.x3d(seg,sec=sec), h.y3d(seg,sec=sec), h.z3d(seg,sec=sec), h.diam3d(seg,sec=sec)]
# Always record Vmem of SomaList0 and Time:
Mag = 'Vmem'
SecName = 'SomaList0_000'
if Mag not in Recordings.keys():
Recordings[Mag] = {}
Recordings[Mag][SecName] = h.Vector()
Recordings[Mag][SecName].record( sec( loc )._ref_v )
elif SecName not in Recordings[Mag].keys():
Recordings[Mag][SecName] = h.Vector()
Recordings[Mag][SecName].record( sec( loc )._ref_v )
return Recordings
def save_spiking_times(Recordings, FolderName):
"""
Time of spikes are detected and saved in :data:`LCNhm_main.FolderName` */TimeSpikes.txt*
If there are no spikes, it will write ``NaN``
Parameters
----------
Recordings: Dictionary
Dictionary with all recordings, output from :func:`recordings`
FolderName: String
Name of folder where recordings will be saved, output from :func:`make_folder`
"""
# Membrane potential of soma and time
VmemSoma = np.array(Recordings['Vmem']['SomaList0_000'].to_python())
Time = np.array(Recordings['Time'].to_python())
# Initialize variable
TimeSpikes = []
# Time of spikes
for i, iTime in enumerate(Time[Time>50.]):
if (VmemSoma[i]>VmemSoma[i-1]) and (VmemSoma[i]>VmemSoma[i+1]) and (VmemSoma[i]>-10):
TimeSpikes.append(iTime)
# If there are no spikes, 'nan'
if len(TimeSpikes)==0:
TimeSpikes.append(np.nan)
# Save
#with open('/'.join(FolderName.split('/')[:-1])+'/TimeSpikes.txt',"a") as file:
with open(FolderName+'/TimeSpikes.txt',"a") as file:
file.write(" ".join(map(str, TimeSpikes )))
file.write("\n")
def save_recordings(Recordings, FolderName, RECORDING_MAGNITUDE):
"""
Recordings of the magnitudes selected in :const:`LCNhm_configurationfile.RECORDING_MAGNITUDE`
are saved in a txt file in :data:`LCNhm_main.FolderName` subfolder, as:
Eg.: *Recordings_Vmem.txt*
Eg.: *Recordings_Pos.txt*
Membrane potentials (Vmem) and membrane currents (Imem) along time of each recording site
is saved in different rows
Eg.:
>>> vi LCNhm-results/20190723_1200_test/Recordings_Vmem.txt
>>> Time 0.000 0.025 0.050 ...
>>> SomaList0_000 -65.000 -65.300 -65.450 ...
>>> ApicList0_000 -55.000 -54.800 -54.600 ...
Position is saved in different rows for each recording site
Eg.:
>>> vi LCNhm-results/20190723_1200_test/Recordings_Pos.txt
>>> SomaList0_000 0.0 0.0 0.0
>>> ApicList0_000 0.0 0.0 -1000.0
Parameters
----------
Recordings: Dictionary
Dictionary with all recordings, output from :func:`recordings`
FolderName: String
Name of folder where recordings will be saved, output from :func:`make_folder`
"""
# If RECORDING_SECTION is empty, record Soma for Spike times, but don't save it
if len(RECORDING_MAGNITUDE)>0:
# Magnitudes to be recorded
for Mag in Recordings.keys():
if Mag!='Time':
if Mag=='Pos':
with open('%s/Recordings_%s.txt'%(FolderName,Mag),"a") as file:
# Sections
for SecName in Recordings[Mag].keys():
# Write magnitude of section 'SecName'
file.write("%s %.3f %.3f %.3f %.3f\n"%tuple([SecName]+Recordings[Mag][SecName]))
else:
with open('%s/Recordings_%s.txt'%(FolderName,Mag),"a") as file:
# Time
file.write("Time "+" ".join(map(str, Recordings['Time'].to_python() )))
file.write("\n")
# Sections
for SecName in Recordings[Mag].keys():
# Write magnitude of section 'SecName'
file.write(SecName+" "+" ".join(map(str, Recordings[Mag][SecName].to_python() )))
file.write("\n")
def save_parameters(Parameters, FolderName):
"""
Values of the :ref:`LCNhm-configuration-file` parameters are written in Parameters.txt
in :data:`LCNhm_main.FolderName` subfolder.
Eg.:
>>> vi LCNhm-results/20190723_1200_test/Parameters.txt
>>> DIR_LOCATION /home/andrea/Projects/HippoModel/LCNhippomodel
>>> OPT_FOLDER_NAME test
>>> SIMPROP_THETA_MODE True
>>> SIMPROP_THETA_PERIOD 166.000000
>>> SIMPROP_START_TIME 0.000000
>>> SIMPROP_SIM_TIME 1660.000000
>>> SIMPROP_END_TIME 1660.000000
>>> SIMPROP_DT 0.025000
>>> SIMPROP_TEMPERATURE 34.000000
>>> CELLPROP_MORPHOLOGY n128
>>> CELLPROP_INTRINSIC 0
>>> CELLPROP_INTRINSIC_IONCHS iNas iA iAHPs iC iCaL iCaT iKDR iM iHCN iL
>>> CELLPROP_INTRINSIC_EXPERIMENT 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
>>> CELLPROP_SYNAPTIC_INPUTS CA3 CA2 EC3 EC2 Axo Bis CCK Ivy NGF OLM PV SCA
>>> CELLPROP_SYNAPTIC_EXPERIMENT 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
>>> CURRENT_DURATION 0.000000
>>> CURRENT_DELAY 0.000000
>>> CURRENT_AMPLITUDES 0.000000
>>> CURRENT_SECTION SomaList0
>>> CURRENT_LOCATION 0.000000
>>> RECORDING_MAGNITUDE
>>> RECORDING_SECTION SomaList0
>>> RECORDING_LOCATION 0.0
Parameters
----------
Parameters: List
List with all :ref:`LCNhm-configuration-file` parameters
FolderName: String
Name of folder where recordings will be saved, output from :func:`make_folder`
"""
# Save configuration file
DIR_LOCATION, OPT_FOLDER_NAME, SIMPROP_THETA_MODE, SIMPROP_THETA_PERIOD, SIMPROP_START_TIME, SIMPROP_SIM_TIME, SIMPROP_END_TIME, SIMPROP_DT, SIMPROP_TEMPERATURE, CELLPROP_MORPHOLOGY, CELLPROP_INTRINSIC, CELLPROP_SYNAPTIC, CELLPROP_INTRINSIC_IONCHS, CELLPROP_INTRINSIC_EXPERIMENT, CELLPROP_SYNAPTIC_INPUTS, CELLPROP_SYNAPTIC_EXPERIMENT, CURRENT_DURATION, CURRENT_DELAY, CURRENT_AMPLITUDES, CURRENT_SECTION, CURRENT_LOCATION, RECORDING_MAGNITUDE, RECORDING_SECTION, RECORDING_LOCATION = Parameters
with open('%s/Parameters.txt'%FolderName,"a") as file:
file.write('DIR_LOCATION %s\n'%DIR_LOCATION)
file.write('OPT_FOLDER_NAME %s\n'%OPT_FOLDER_NAME)
file.write('SIMPROP_THETA_MODE %s\n'%SIMPROP_THETA_MODE)
file.write('SIMPROP_THETA_PERIOD %f\n'%SIMPROP_THETA_PERIOD)
file.write('SIMPROP_START_TIME %f\n'%SIMPROP_START_TIME)
file.write('SIMPROP_SIM_TIME %f\n'%SIMPROP_SIM_TIME)
file.write('SIMPROP_END_TIME %f\n'%SIMPROP_END_TIME)
file.write('SIMPROP_DT %f\n'%SIMPROP_DT)
file.write('SIMPROP_TEMPERATURE %f\n'%SIMPROP_TEMPERATURE)
file.write('CELLPROP_MORPHOLOGY %s\n'%CELLPROP_MORPHOLOGY)
file.write('CELLPROP_INTRINSIC %d\n'%CELLPROP_INTRINSIC)
file.write('CELLPROP_SYNAPTIC %d\n'%CELLPROP_SYNAPTIC)
file.write('CELLPROP_INTRINSIC_IONCHS'+' %s'*len(CELLPROP_INTRINSIC_IONCHS)%tuple(CELLPROP_INTRINSIC_IONCHS)+'\n')
file.write('CELLPROP_INTRINSIC_EXPERIMENT'+' %f'*len(CELLPROP_INTRINSIC_EXPERIMENT)%tuple(CELLPROP_INTRINSIC_EXPERIMENT)+'\n')
file.write('CELLPROP_SYNAPTIC_INPUTS'+' %s'*len(CELLPROP_SYNAPTIC_INPUTS)%tuple(CELLPROP_SYNAPTIC_INPUTS)+'\n')
file.write('CELLPROP_SYNAPTIC_EXPERIMENT'+' %f'*len(CELLPROP_SYNAPTIC_EXPERIMENT)%tuple(CELLPROP_SYNAPTIC_EXPERIMENT)+'\n')
file.write('CURRENT_DURATION'+' %f'*len(CURRENT_DURATION)%tuple(CURRENT_DURATION)+'\n')
file.write('CURRENT_DELAY'+' %f'*len(CURRENT_DELAY)%tuple(CURRENT_DELAY)+'\n')
file.write('CURRENT_AMPLITUDES'+' %f'*len(CURRENT_AMPLITUDES)%tuple(CURRENT_AMPLITUDES)+'\n')
file.write('CURRENT_SECTION'+' %s'*len(CURRENT_SECTION)%tuple(CURRENT_SECTION)+'\n')
file.write('CURRENT_LOCATION'+' %f'*len(CURRENT_LOCATION)%tuple(CURRENT_LOCATION)+'\n')
file.write('RECORDING_MAGNITUDE \n'%RECORDING_MAGNITUDE)
file.write('RECORDING_SECTION'+' %s'*len(RECORDING_SECTION)%tuple(RECORDING_SECTION)+'\n')
file.write('RECORDING_LOCATION'+' %s'*len(RECORDING_LOCATION)%tuple(RECORDING_LOCATION)+'\n')