-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathL3_train_phase3.m
194 lines (164 loc) · 6.35 KB
/
L3_train_phase3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
%% parametri
dt=0.0001; %0.1 millisecondi
t_end3=0.15;
t=0:dt:t_end3;
T=length(t);
% Parametri sigmoide
e0=2.5; %Hz
r=0.7; %1/mV
s0=10; %centro della sigmoide
% ritardi nella comunicazione tra colonne diverse
D_intraLayer=round(dt/dt);
D_extraLayer=round(dt/dt); %delay di 0.0166 secondi ?
% costanti di tempo sinapsi intra-colonna
a=[1/7.7 1/34 1/6.8]*1000; %nell'ordine: ae, as, af; a=1/tau (1/secondi)
% Guadagni (mV) delle sinapsi (G)
G=[5.17 4.45 57.1]; %Ge = 5.17; (per h_e)
%Gs = 4.45; (per h_s)
%Gf = 57.1; (per h_f)
%pesi sinaptici:
C(:,1) = 31.7*ones(1,numero_colonne); %Cep
C(:,2) = 17.3*ones(1,numero_colonne); %Cpe
C(:,3) = 51.9*ones(1,numero_colonne); %Csp
C(:,4) = 100*ones(1,numero_colonne); %Cps
C(:,5) = 100*ones(1,numero_colonne); %Cfs
C(:,6) = 66.9*ones(1,numero_colonne); %Cfp
C(:,7) = 16*ones(1,numero_colonne); %Cpf
C(:,8) = 18*ones(1,numero_colonne); %Cff
%% addestramento
Wp_L2L3=zeros(numero_colonne,numero_colonne);
gammaWb=10;
thresh_lowb=0.7;
Wp_L2L3_max=11;
%var stato L2
yp2=zeros(numero_colonne,T);
xp2=zeros(numero_colonne,T);
vp2=zeros(numero_colonne,1);
zp2=zeros(numero_colonne,T);
ye2=zeros(numero_colonne,T);
xe2=zeros(numero_colonne,T);
ve2=zeros(numero_colonne,1);
ze2=zeros(numero_colonne,T);
ys2=zeros(numero_colonne,T);
xs2=zeros(numero_colonne,T);
vs2=zeros(numero_colonne,1);
zs2=zeros(numero_colonne,T);
yf2=zeros(numero_colonne,T);
xf2=zeros(numero_colonne,T);
zf2=zeros(numero_colonne,T);
vf2=zeros(numero_colonne,1);
xl2=zeros(numero_colonne,T);
yl2=zeros(numero_colonne,T);
mf2=zeros(numero_colonne,1);
%var stato L3
yp3=zeros(numero_colonne,T);
xp3=zeros(numero_colonne,T);
vp3=zeros(numero_colonne,1);
zp3=zeros(numero_colonne,T);
ye3=zeros(numero_colonne,T);
xe3=zeros(numero_colonne,T);
ve3=zeros(numero_colonne,1);
ze3=zeros(numero_colonne,T);
ys3=zeros(numero_colonne,T);
xs3=zeros(numero_colonne,T);
vs3=zeros(numero_colonne,1);
zs3=zeros(numero_colonne,T);
yf3=zeros(numero_colonne,T);
xf3=zeros(numero_colonne,T);
zf3=zeros(numero_colonne,T);
vf3=zeros(numero_colonne,1);
xl3=zeros(numero_colonne,T);
yl3=zeros(numero_colonne,T);
mf3=zeros(numero_colonne,1);
Ep2=zeros(numero_colonne,1);
If2=zeros(numero_colonne,1);
Ep3=zeros(numero_colonne,1);
If3=zeros(numero_colonne,1);
sigma_p = sqrt(5/dt);
sigma_f = sqrt(5/dt);
rng(12)
np2 = randn(numero_colonne,T)*sigma_p;
nf2 = randn(numero_colonne,T)*sigma_f;
rng(13)
np3 = randn(numero_colonne,T)*sigma_p;
nf3 = randn(numero_colonne,T)*sigma_f;
if SET_PATT==3
SEQ2=all_patterns(:,[2:5 7:10]);
SEQ3=[all_patterns(:,1:4) all_patterns(:,6:9)];
else
SEQ2=all_patterns;
SEQ3=[zeros(numero_colonne,1) all_patterns(:,1:end-1)];
end
J=size(SEQ2,2);
w = waitbar(0,'Training L2 e L3 (fase 2)...','WindowStyle','modal');
for j=1:J
%completo ingressi a piramidali e gaba fast:
mp2=SEQ2(:,j)*2700;
mp3=SEQ3(:,j)*2700;
for k=1:T-1 %ciclo nel tempo...
up2=np2(:,k)+mp2;
uf2=nf2(:,k)+mf2;
up3=np3(:,k)+mp3;
uf3=nf3(:,k)+mf3;
if (k>D_intraLayer)
If2=K_L2L2*yp2(:,k-D_intraLayer)+A_L2L2*zp2(:,k-D_intraLayer);
If3=K_L3L3*yp3(:,k-D_intraLayer)+A_L3L3*zp3(:,k-D_intraLayer);
end
if(k>D_extraLayer)
Ep2=Wp_L2L3*yp3(:,k-D_extraLayer);
%Ep3=Wp_L3L2*yp2(:,k-D_extraLayer);
%input extra-layer solo dal maestro!
end
%potenziali post-sinaptici: (comb lin degli outputs standard)
vp2(:)=C(:,2).*ye2(:,k)-C(:,4).*ys2(:,k)-C(:,7).*yf2(:,k)+Ep2;
ve2(:)=C(:,1).*yp2(:,k);
vs2(:)=C(:,3).*yp2(:,k);
vf2(:)=C(:,6).*yp2(:,k)-C(:,5).*ys2(:,k)-C(:,8).*yf2(:,k)+yl2(:,k)+If2;
%spikes:
zp2(:,k)=2*e0./(1+exp(-r*(vp2(:)-s0)));
ze2(:,k)=2*e0./(1+exp(-r*(ve2(:)-s0)));
zs2(:,k)=2*e0./(1+exp(-r*(vs2(:)-s0)));
zf2(:,k)=2*e0./(1+exp(-r*(vf2(:)-s0)));
%potenziali post-sinaptici: (comb lin degli outputs standard)
vp3(:)=C(:,2).*ye3(:,k)-C(:,4).*ys3(:,k)-C(:,7).*yf3(:,k)+Ep3;
ve3(:)=C(:,1).*yp3(:,k);
vs3(:)=C(:,3).*yp3(:,k);
vf3(:)=C(:,6).*yp3(:,k)-C(:,5).*ys3(:,k)-C(:,8).*yf3(:,k)+yl3(:,k)+If3;
%spikes:
zp3(:,k)=2*e0./(1+exp(-r*(vp3(:)-s0)));
ze3(:,k)=2*e0./(1+exp(-r*(ve3(:)-s0)));
zs3(:,k)=2*e0./(1+exp(-r*(vs3(:)-s0)));
zf3(:,k)=2*e0./(1+exp(-r*(vf3(:)-s0)));
%aggiornamento sinapsi...
if k>500
ATT_PRE=(zp3(:,k)/(2*e0) - thresh_lowb)'; %1x400
ATT_PRE(ATT_PRE<0)=0;
ATT_POST=(zp2(:,k)/(2*e0)-thresh_lowb); %400x1
ATT_POST(ATT_POST<0)=0;
WEIGHT=(Wp_L2L3_max - Wp_L2L3).*(ones(numero_colonne, numero_colonne)-eye(numero_colonne));
Wp_L2L3 = Wp_L2L3 + gammaWb .* (ATT_POST * ATT_PRE) .* WEIGHT;
end
xp2(:,k+1)=xp2(:,k)+(G(1)*a(1)*zp2(:,k)-2*a(1)*xp2(:,k)-a(1)*a(1)*yp2(:,k))*dt;
yp2(:,k+1)=yp2(:,k)+xp2(:,k)*dt;
xe2(:,k+1)=xe2(:,k)+(G(1)*a(1)*(ze2(:,k)+up2(:)./C(:,2))-2*a(1)*xe2(:,k)-a(1)*a(1)*ye2(:,k))*dt;
ye2(:,k+1)=ye2(:,k)+xe2(:,k)*dt;
xs2(:,k+1)=xs2(:,k)+(G(2)*a(2)*zs2(:,k)-2*a(2)*xs2(:,k)-a(2)*a(2)*ys2(:,k))*dt;
ys2(:,k+1)=ys2(:,k)+xs2(:,k)*dt;
xl2(:,k+1)=xl2(:,k)+(G(1)*a(1)*uf2(:)-2*a(1)*xl2(:,k)-a(1)*a(1)*yl2(:,k))*dt;
yl2(:,k+1)=yl2(:,k)+xl2(:,k)*dt;
xf2(:,k+1)=xf2(:,k)+(G(3)*a(3)*zf2(:,k)-2*a(3)*xf2(:,k)-a(3)*a(3)*yf2(:,k))*dt;
yf2(:,k+1)=yf2(:,k)+xf2(:,k)*dt;
xp3(:,k+1)=xp3(:,k)+(G(1)*a(1)*zp3(:,k)-2*a(1)*xp3(:,k)-a(1)*a(1)*yp3(:,k))*dt;
yp3(:,k+1)=yp3(:,k)+xp3(:,k)*dt;
xe3(:,k+1)=xe3(:,k)+(G(1)*a(1)*(ze3(:,k)+up3(:)./C(:,2))-2*a(1)*xe3(:,k)-a(1)*a(1)*ye3(:,k))*dt;
ye3(:,k+1)=ye3(:,k)+xe3(:,k)*dt;
xs3(:,k+1)=xs3(:,k)+(G(2)*a(2)*zs3(:,k)-2*a(2)*xs3(:,k)-a(2)*a(2)*ys3(:,k))*dt;
ys3(:,k+1)=ys3(:,k)+xs3(:,k)*dt;
xl3(:,k+1)=xl3(:,k)+(G(1)*a(1)*uf3(:)-2*a(1)*xl3(:,k)-a(1)*a(1)*yl3(:,k))*dt;
yl3(:,k+1)=yl3(:,k)+xl3(:,k)*dt;
xf3(:,k+1)=xf3(:,k)+(G(3)*a(3)*zf3(:,k)-2*a(3)*xf3(:,k)-a(3)*a(3)*yf3(:,k))*dt;
yf3(:,k+1)=yf3(:,k)+xf3(:,k)*dt;
end
waitbar(j/J,w);
end
close(w)