-
Notifications
You must be signed in to change notification settings - Fork 1
/
Fig5_example_dend_traces.py
597 lines (511 loc) · 27.5 KB
/
Fig5_example_dend_traces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 9 12:50:24 2022
@author: rh17872 - Rachel Humphries
Runs simulation for six example dendrites - takes ~ 2 hours to run.
Plots neuron morphology and example traces from Figure 5A+B of the paper
Plots nonlinear curves for the 6 example dendrites (Figure 5C).
Rachel Humphries, Jack R. Mellor, Cian O'Donnell,
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model,
Neuroscience, 2021,ISSN 0306-4522
https://doi.org/10.1016/j.neuroscience.2021.11.014
"""
import numpy as np
from neuron import h
from neuron.units import ms, mV
h.load_file('stdrun.hoc')
import matplotlib
import matplotlib.pyplot as plt
import ca3_synapse_functions as csf
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Line3DCollection
import matplotlib.gridspec as gridspec
import pickle
import add_scalebar_func as scale
plt.rcParams.update({'font.size': 14})
plt.rcParams['axes.spines.right'] = False
plt.rcParams['axes.spines.top'] = False
plt.rcParams["savefig.dpi"] = 600
'''Experiment parameters'''
pickle_file = "output_variables.pkl"
experiment = ["Control", "ACh", "Ka" r'$\downarrow$', "Km" r'$\downarrow$',"Kca" r'$\downarrow$',"Kir" r'$\downarrow$']
save_exps = ["Control", "ACh", "Ka", "Km", "Kca", "Kir"]
regions = ["SR", "SLM"]
example_dends = [[12,36,27],[4,3,20]] # dendrite index for SR and SLM for example dendrites
'''Synapse parameters'''
syn_ISIs = 1
syn_density = 1 #ums between each synapse 0,1,2,5
syn_NAratios = [0.5] #AMPA to NMDA ratio
nmda_times = [5,16]
ampa_times = [0.5,1.5] #rise and decay times 0.4,4.1
total_cond_ac = 0.0035*0.5
total_cond_pp = 0.0035*0.5#0.00064
a_ac_weights, n_ac_weights = csf.calculate_synapse_weights(syn_NAratios,total_cond_ac, "AC")
a_pp_weights, n_pp_weights = csf.calculate_synapse_weights(syn_NAratios,total_cond_pp, "PP")
for i,x in enumerate(a_ac_weights) :
print ("AC AMPA:NMDA ratios :", x/n_ac_weights[i] )
print ("PP AMPA:NMDA ratios :", a_pp_weights[i]/n_pp_weights[i])
'''Stimulation parameters'''
step = 1
total_syns = 20
num_synapses = range(step,total_syns+1,step)
stim_num = 1 #number of stims
stim_start = 810 #start of stim (ms)
stim_noise = 0 #noise of stim
stim_interval = 20 #interval between stims (20ms = 50hz)
'''Optimiser parameters'''
def setup_neuron_model() :
optimiser = [5.557118781038023e-11, 0.0011114634012579765, 0.0011580392555217256, 3.472924393529932e-06, 4.403602806593143e-10, 4.616466181142678e-09, 5.583387888166266e-06, 5.5750027000813285, -29.999999524116564, 30.0, 30.0, -48.167858484536445, 0.5, 0.5, 0.5, 0.20000188521088813]
gka =optimiser[0]#random.uniform(0.01,1) #0.8 #0.02
gkm = optimiser[1]#random.uniform(0.001,0.1)#0.1 #0.017 #0.03
gkca =optimiser[2]#random.uniform(0.001,0.1)#0.01 #0.001
gkir =optimiser[3]#random.uniform(0.0001,0.01)#0.001 #0.00015 #1.44e-4
gpas =optimiser[4]#random.uniform(0.0004,0.04)#0.0004 #4e-8
gkdr = optimiser[5]
gih = optimiser[6]
ka_sh = optimiser[7]
km_sh = optimiser[8]#random.uniform(0,25)
ih_sh = optimiser[9]#random.uniform(0,25)
kir_sh = optimiser[10]#random.uniform(0,25)
epas = optimiser[11] #-60.
ka_ach_block = optimiser[12] #random.uniform(0.,0.2)
km_ach_block = optimiser[13] #random.uniform(0.,0.2)
kca_ach_block = optimiser[14] #random.uniform(0.,0.2)
kir_ach_block = optimiser[15]#random.uniform(0.,0.2)
'''Set up neuron model'''
h('{Vrest = -75.}')
h('{vrest_val = -75.}')
h('{tstop=1000}')
h('{epas = -70}')
h('{epas_val = -70}')
#h('{Rm = 50740}')
#h('{rm_val = 50740}')
h('{Cm = 0.7}')
h('{RaAll= 150}')
h('{gpas = 1/25370}')
h('{gpas_val = 1/25370}')
h('AXONM = 5')
h('{gna = 0.0}')
h('{gkdr = 0.005}') #0.00518 #0.125
h('{gkdr_val = 0.005}') #0.00518 #0.125
h('{KMULT = 0.02}') #Ka conductance
h('{gka_val = 0.02}') #Ka conductance
h('{gkm=0.017}')
h('{gkm_val=0.017}')
h('{gkir=1.44e-05}')
h('{gkir_val=1.44e-05}')
h('{gkd=0.0}')
h('{gkd_val=0.0}')
h('{gc=1.e-5}')
h('{gcal=gc}') #1.0659e-5 #0.000507
h('{gcal_val=gc}') #1.0659e-5 #0.000507
h('{gcat=gc}') #5.984e-7 #4.554e-7
h('{gcat_val=gc}') #5.984e-7 #4.554e-7
h('{gcan=gc}') #3.791e-5 #0.000165
h('{gcan_val=gc}') #3.791e-5 #0.000165
h('{gKc=5e-5}') #0.000111 #0.00412
h('{gKc_val=5e-5}')
#h('{gkc_val=5e-5}')
h('{gkcas=0.001}')
h('{gkcas_val=0.001}')
h('{gahp=0.0001}') #0.000511 #0.00179
h('{gahp_val=0.0001}')
h('{ghd=0.00001}') #6.529e-5 #9.578e-5
h('{ghd_val=0.00001}')
h('km_sh = 0')
h('km_sh_val = 0')
h('ka_sh = 0')
h('ka_sh_val = 0')
h('kir_sh = 0')
h('kir_sh_val = 0')
h('ih_sh = 0')
h('ih_sh_val = 0')
h('na_block = 1.')
h('na_block_val = 1.')
h('ka_block = 1.')
h('ka_block_val = 1.')
h.load_file('ca3b-cell1zr-fig9b.hoc')
h.gpas_val = gpas
h.epas_val = epas
#h.rm_val = rm
h.gkdr_val = gkdr
h.ghd_val = gih
h.km_sh_val = km_sh
h.ka_sh_val= ka_sh
h.kir_sh_val= kir_sh
h.ih_sh_val = ih_sh
h.dt = 1.
dt = 1.
return gka, gkm, gkca, gkir, ka_ach_block, km_ach_block, kca_ach_block, kir_ach_block, dt
gka, gkm, gkca, gkir, ka_ach_block, km_ach_block, kca_ach_block, kir_ach_block, dt = setup_neuron_model()
'''Setup potassium channel conductances for each run'''
def setup_potassium_channels(save_exps,pot_channel,pot_conductance,pot_block) :
if pot_channel in save_exps :
pot_cond_list= [pot_conductance]*(len(save_exps)) #0.02 / 0.0068 /0.8 (*40)
pot_cond_list = [0. if i==save_exps.index(pot_channel) else x for i,x in enumerate(pot_cond_list)]
pot_cond_list = [pot_conductance*pot_block if save_exps[i]=="ACh" else x for i,x in enumerate(pot_cond_list)]
else :
pot_cond_list = [pot_conductance]*(len(save_exps))
pot_cond_list = [pot_conductance*pot_block if save_exps[i]=="ACh" else x for i,x in enumerate(pot_cond_list)]
return pot_cond_list
gkas = setup_potassium_channels(save_exps,"Ka",gka,1.) #ka_ach_block has to be set during simulation in the hoc file
gkms = setup_potassium_channels(save_exps,"Km",gkm,km_ach_block)
gkcas = setup_potassium_channels(save_exps,"Kca",gkca,kca_ach_block)
gkirs = setup_potassium_channels(save_exps,"Kir",gkir,kir_ach_block)
print ("Potassium conductances: ", gkas, gkms, gkcas, gkirs)
'''Divide and setup dendrites'''
sl_dends = []
sr_dends = []
slm_dends = []
h.distance(sec=h.soma[0]) #set the origin at the soma
sl_sr_bound = 150
sr_slm_bound = 400
rel = 0.5
sl_dends, sr_dends, slm_dends = csf.divide_dends(rel,sl_sr_bound,sr_slm_bound,sl_dends,sr_dends,slm_dends)
so_dends = range(int(h.numbasal)) #basal dendrites
all_dends = [so_dends, sl_dends, sr_dends, slm_dends]
'''Identify dendrite sections to use in simulation - either example dends list or all dendrites > 20um in length'''
so_dend_200 = []
for d in so_dends :
if h.dendrite[d].L > 20 :
so_dend_200.append([d])
sr_dend_200 = [[d] for d in sr_dends if h.apical_dendrite[d].L > 20]
slm_dend_200 = [[d] for d in slm_dends if h.apical_dendrite[d].L > 20]
if len(example_dends) > 0 :
sr_dend_200 = [sr_dend_200[i] for i in example_dends[0]]
slm_dend_200 = [slm_dend_200[i] for i in example_dends[1]]
print ("SR dends: ", sr_dend_200, "SLM dends: ", slm_dend_200)
all_dends_200 = []
all_dends_region = []
if "SO" in regions :
all_dends_200.append(so_dend_200)
all_dends_region.append(so_dends)
if "SR" in regions :
all_dends_200.append(sr_dend_200)
all_dends_region.append(sr_dends)
if "SLM" in regions :
all_dends_200.append(slm_dend_200)
all_dends_region.append(slm_dends)
'''Calculate dendrite diameters'''
dend_diams = csf.get_dend_diameters(all_dends_200, regions)
'''Set up lists'''
soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
soma_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_distances = [[[] for j in x]for x in all_dends_200]
irs = [[[]for j in x] for x in all_dends_200]
dend_centers = [[[]for j in x]for x in all_dends_200]
nmda_currs = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_dend_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_soma_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_dend_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
'''Run simulation'''
for r,region in enumerate(all_dends_200) : #loops through region
print ("Region: ", regions[r])
for j,dends in enumerate(region) : #loops through dendrite group
print ("Dendrites: ", dends)
#calculate where to position synapses on dendrite section.
if regions[r] == "SO" :
pos_per_dend, mid_dend,mid_syn_pos,ordered_pos = csf.synapse_positioning(h.dendrite,dends,syn_density,num_synapses[-1])
else :
pos_per_dend, mid_dend,mid_syn_pos,ordered_pos = csf.synapse_positioning(h.apical_dendrite,dends,syn_density,num_synapses[-1])
for s,nar in enumerate(experiment) : #loops through different potassium channel blocks.
print ("Experiment: ", experiment[s])
h.gka_val = gkas[s]
h.ka_block_val = 1.
if gkas[s] == 0.:
h.ka_block_val = 0.
if nar == "ACh":
h.ka_block_val = ka_ach_block
h.na_block_val = 1.
if h.gna == 0.:
h.na_block_val = 0.
h.gkm_val = gkms[s]
h.gkcas_val = gkcas[s]
h.gkir_val = gkirs[s]
for n in num_synapses : #loops through number of synapses to add
print ("Combined synapses" , n) # adds both AMPA and NMDA inputs
glu_syns = []
glu_netstim = []
glu_netcon = []
for ns in range(n) : #loops through each synapse to add
d = dends[ordered_pos[ns][0]]
p = pos_per_dend[ordered_pos[ns][0]][ordered_pos[ns][1]]
#print "Synapses: ", d, p
if regions[r] == "SO" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.dendrite[d],p,n_ac_weights[0],nmda_times[0],nmda_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SR" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.apical_dendrite[d],p,n_ac_weights[0],nmda_times[0],nmda_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SLM" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.apical_dendrite[d],p,n_pp_weights[0],nmda_times[0],nmda_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_pp_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
soma_v = h.Vector().record(h.soma[0](0.5)._ref_v,dt) #record soma voltage
#record stimulated dendrite voltage
if regions[r] == "SO" :
dend_v = h.Vector().record(h.dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
else:
dend_v = h.Vector().record(h.apical_dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
t = h.Vector().record(h._ref_t,dt) #record time
h.fig9b() #calls the function in the hoc file to run the simulation
soma_v = np.array(soma_v)
dend_v = np.array(dend_v)
soma_volts[r][j][s].append(soma_v)
dend_volts[r][j][s].append(dend_v)
soma_peaks[r][j][s].append(max(soma_v[int(stim_start/dt):]))
dend_peaks[r][j][s].append(max(dend_v[int(stim_start/dt):]))
freq=0
rin= h.Impedance() # does not measure resting Rin here
rin.compute(freq,1)
if regions[r] == "SO" :
input_imp = rin.input(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.dendrite[dends[ordered_pos[0][0]]])
else:
input_imp = rin.input(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.apical_dendrite[dends[ordered_pos[0][0]]])
irs[r][j].append(input_imp)
'''Repeat simulation with AMPA only synapses'''
for n in num_synapses : #loops through number of synapses to add
print ("Only AMPA" , n)
glu_syns = []
glu_netstim = []
glu_netcon = []
for ns in range(n) : #loops through each synapse to add
d = dends[ordered_pos[ns][0]]
p = pos_per_dend[ordered_pos[ns][0]][ordered_pos[ns][1]]
#print "Synapses: ", d, p
if regions[r] == "SO" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SR" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SLM" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_pp_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
soma_v = h.Vector().record(h.soma[0](0.5)._ref_v,dt)
if regions[r] == "SO" :
dend_v = h.Vector().record(h.dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
else:
dend_v = h.Vector().record(h.apical_dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
t = h.Vector().record(h._ref_t,dt)
h.fig9b()
soma_v = np.array(soma_v)
dend_v = np.array(dend_v)
ampa_soma_volts[r][j][s].append(soma_v)
ampa_dend_volts[r][j][s].append(dend_v)
ampa_soma_peaks[r][j][s].append(max(soma_v[int(stim_start/dt):]))
ampa_dend_peaks[r][j][s].append(max(dend_v[int(stim_start/dt):]))
if regions[r] == "SO" :
dend_distances[r][j].append(-h.distance(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.dendrite[dends[ordered_pos[0][0]]]))
else :
dend_distances[r][j].append(h.distance(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.apical_dendrite[dends[ordered_pos[0][0]]]))
dend_centers[r][j].append(dends[ordered_pos[0][0]])
dend_centers[r][j].append(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])
for i,r in enumerate(irs):
for j,d in enumerate(r) :
print (regions[i], "IRs ", all_dends_200[i][j], d )
time = np.array(t)
'''Save data to pickle file'''
with open(pickle_file, 'wb') as f: # Python 3: open(..., 'wb')
pickle.dump([all_dends_200,soma_volts, dend_volts, dt, time, irs, soma_peaks, dend_peaks, nmda_currs, ampa_soma_peaks,ampa_dend_peaks,ampa_soma_volts, ampa_dend_volts,dend_distances,sr_dend_200,slm_dend_200,dend_diams,so_dends,sl_dends,sr_dends,slm_dends], f)
f.close()
'''Load data from pickle file''' # If have run and saved all data previously can load it from pickle file here.
# pickle_output = "ach_exp_output_v1.pkl"
# with open("ach_exp_output_v1.pkl", 'rb') as f: # Python 3: open(..., 'rb')
# all_dends_200,soma_volts, dend_volts, dt, time, irs, soma_peaks, dend_peaks, nmda_currs, ampa_soma_peaks,ampa_dend_peaks,ampa_soma_volts, ampa_dend_volts,dend_distances,sr_dend_200,slm_dend_200,dend_diams,so_dends,sl_dends,sr_dends,slm_dends = pickle.load(f)
# f.close()
'''
Pickle file data - ouput from running ach_exp.py
all_dends_200 : dendrite sections used in simulation
soma_volts : somatic voltages of each simulation (mv)
dend_volts : dendritic voltages of stimulated dendrite (mv)
dt : simulation timestep (ms)
time : time
irs : input resistance during simulation (Mohm)
soma_peaks : peak of each somatic voltage trace (mv)
dend_peaks : peak of each dendritic voltage trace (mv)
nmda_currs : NMDA current
ampa_soma_peaks : peak of AMPA only simulations recorded at soma (mv)
ampa_dend_peaks : peak of AMPA only simulations recorded in dendrites (mv)
ampa_soma_volts : somatic voltages of each AMPA-only simulation (mv)
ampa_dend_volts : AMPA-only dendritic voltages of stimulated dendrite (mv)
dend_distances : distance of stimulated dendrites from soma (um)
sr_dend_200 : SR dendrite sections used in simulation
slm_dend_200 : SLM dendrite sections used in simulation
dend_diams : dendrite diameters
so_dends : all SO dendrite sections
sl_dends : all SL dendrite sections
sr_dends : all SR dendrite sections
slm_dends : all SLM dendrite sections
'''
'''3D neuron points for plotting morphology'''
soma_3d = [[[]for i in range(3)]]
so_dends_3d = [[[]for i in range(3)] for i in so_dends]
sl_dends_3d = [[[]for i in range(3)] for i in sl_dends]
sr_dends_3d = [[[]for i in range(3)] for i in sr_dends]
slm_dends_3d = [[[]for i in range(3)] for i in slm_dends]
diams_3d = [[],[],[],[],[]] #for soma and each region dendrite diameters, [soma, so, sl , sr, slm]
def get_3d_points(section,dend_ind,array) : #gets 3d points from NEURON
total = section.n3d()
#print range(total)
for t in range(total):
#print t
array[dend_ind][0].append(section.x3d(t))
array[dend_ind][1].append(section.y3d(t))
array[dend_ind][2].append(section.z3d(t))
return array
soma_3d = get_3d_points(h.soma[0],0,soma_3d)
diams_3d[0].append(h.soma[0].diam)
for i,d in enumerate(so_dends) :
so_dends_3d = get_3d_points(h.dendrite[d],i,so_dends_3d)
diams_3d[1].append(h.dendrite[d].diam)
for i,d in enumerate(sl_dends) :
sl_dends_3d = get_3d_points(h.apical_dendrite[d],i,sl_dends_3d)
diams_3d[2].append(h.apical_dendrite[d].diam)
for i,d in enumerate(sr_dends) :
sr_dends_3d = get_3d_points(h.apical_dendrite[d],i,sr_dends_3d)
diams_3d[3].append(h.apical_dendrite[d].diam)
for i,d in enumerate(slm_dends) :
slm_dends_3d = get_3d_points(h.apical_dendrite[d],i,slm_dends_3d)
diams_3d[4].append(h.apical_dendrite[d].diam)
flat_dends = [[item for sublist in reg for item in sublist] for reg in all_dends_200]
def which_color(dend,region) : # function for setting color based on dendrite distance from soma
normcolor = matplotlib.colors.Normalize(vmin=150, vmax=650)
dend_dist = (dend_distances[region][dend][0])
linecolor = cm.plasma_r(normcolor(dend_dist))
return linecolor, normcolor
'''Plot morphology using 3D co-ordinates'''
fig = plt.figure(figsize=(7,6))
ax1 = plt.axes(projection='3d')
for i,s in enumerate(soma_3d) :
ax1.plot(xs=s[0],ys=s[2],zs=s[1], color = 'lightgrey', linewidth=diams_3d[0][i])
for i,d in enumerate(so_dends_3d) :
ax1.plot(xs=d[0],ys=d[2],zs=d[1],color="lightgrey", linewidth=diams_3d[1][i])
for i,d in enumerate(sl_dends_3d) :
ax1.plot(xs=d[0],ys=d[2],zs=d[1],color = "lightgrey", linewidth=diams_3d[2][i])
for i,d in enumerate(sr_dends_3d) :
if sr_dends[i] in flat_dends[0]:
linecolor,normcolor = which_color(flat_dends[0].index(sr_dends[i]),0) # 0 or SR
ax1.plot(xs=d[0],ys=d[2],zs=d[1],color=linecolor, linewidth=diams_3d[3][i])
else:
ax1.plot(xs=d[0],ys=d[2],zs=d[1],color="lightgrey", linewidth=diams_3d[3][i])
for i,d in enumerate(slm_dends_3d) :
if slm_dends[i] in flat_dends[1]:
linecolor,normcolor = which_color(flat_dends[1].index(slm_dends[i]),1) # 0 or SR
ax1.plot(xs=d[0],ys=d[2],zs=d[1],color=linecolor , linewidth=diams_3d[4][i])
else:
ax1.plot(xs=d[0],ys=d[2],zs=d[1],color="lightgrey", linewidth=diams_3d[4][i])
cbar = fig.colorbar(cm.ScalarMappable(norm=normcolor,cmap='plasma_r'), ax=ax1, shrink = 0.75, aspect=15, pad=-0.25, orientation="horizontal")
cbar.set_label('Dendrite distance from soma (\u03bcm)', rotation=0, labelpad=5)
ax1.view_init(elev=0., azim=46.)
ax1.set_axis_off()
ax1.autoscale(tight=True)
ax1.set_xlim3d(-220.725,100) #-171.725,100
ax1.set_ylim3d(-220.3,100) #-159.3, 100
ax1.set_zlim3d(-180,310)
plt.savefig("ca3_recon.png", dpi=600)
'''Example dendrites''' # only need this if have run more than the 6 example dendrites
# regions = ["SR", "SLM"]
# flatten_distances = [[item for sublist in reg for item in sublist] for reg in dend_distances]
# ordered_distances = [sorted(reg) for reg in flatten_distances]
# dists = [[3,len(flatten_distances[0])//2-5,-3] ,[2,len(flatten_distances[1])//2,-2]]
# example_dends = [[] for r in regions]
# for i,r in enumerate(dists) :
# for d in r :
# example_dends[i].append(flatten_distances[i].index(ordered_distances[i][d]))
'''Plot example traces (from Figure 5b)'''
eg_weights = [1,9,16]
stim_start = 810 #start of stim (ms)
experiment = ["Control", "ACh", "Ka" r'$\downarrow$', "Km" r'$\downarrow$',"Kca" r'$\downarrow$',"Kir" r'$\downarrow$']
save_exps = ["Control", "ACh", "Ka", "Km", "Kca", "Kir"]
def plot_eg_voltage_traces(ax,volts,i,j,a,exp,ymax_lim,ymin_lim,scale_time,scale_mv,xmax) :
'''
ax : axes to plot
volts : voltage array
i : 0 or 1 (SR or SLM dendrite)
j : dendrite index for accessing voltages (in this simulation example just need 'a' parameter)
a : example dendrite index (0-2)
exp : 0-5 index from experiment list
ymax_lim : y-max limit
ymin_lim : y-min limit
scale_time : scalebar x size (ms)
scale_mv : scalebar y size (mv)
xmax : ms time after stim_start to plot
'''
for k,s in enumerate(volts[i][a][exp]):#[::2] :
linecolor,normcolor = which_color(a,i) # 0 or SR
if k in eg_weights :
thick, = ax.plot(time[int((stim_start-10)/dt):int((stim_start+xmax)/dt)],s[int((stim_start-10)/dt):int((stim_start+xmax)/dt)],linewidth=1.5,color = linecolor)
else:
ax.plot(time[int((stim_start-10)/dt):int((stim_start+xmax)/dt)],s[int((stim_start-10)/dt):int((stim_start+xmax)/dt)],linewidth=0.5,color = linecolor)
if i ==1 and a==2 :
ax.annotate(experiment[exp],(0.5,1.1), xycoords='axes fraction', ha='center', va='center', size=10)
ax.set_ylim(ymin_lim,ymax_lim)
if i ==1 and a==2 and exp==1 :
scale.scale_bar(ax,scale_time,scale_mv,str(scale_time)+"ms","",1, barwidth=1, sepx=3, sepy=-1.) #ax,sizex,sizey,labelx,labely,location
elif exp == 0 :
ax.yaxis.set_visible(True)
ax.set_frame_on(True)
ax.spines['bottom'].set_visible(False)
ax.xaxis.set_visible(False)
#ax.spines['left'].set_visible(True)
else:
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.set_frame_on(False)
colors = ["black","royalblue","deepskyblue","darkorange","lightseagreen","orangered"]
'''Calculate NMDA-mediated voltage by subtracting AMPA-only voltage'''
nmda_volts_dend = [[[[] for i in experiment] for j in x]for x in all_dends_200]
nmda_amps_dend = [[[[] for i in experiment] for j in x]for x in all_dends_200]
for i,r in enumerate(soma_volts) :
for j,dend in enumerate(r) :
for k, dens in enumerate(dend) : #loops through experiments
for l, ns in enumerate(dens) : #loops through synapse numbers
nm_volts_dend = [x1 - x2 for (x1, x2) in zip(dend_volts[i][j][k][l],ampa_dend_volts[i][j][k][l])] # subtract AMPA-only voltages
nmda_volts_dend[i][j][k].append(nm_volts_dend)
nmda_amps_dend[i][j][k].append(max(nm_volts_dend[int((stim_start-2)/dt):])) #amplitude of NMDA response
def plot_weight_vs_amps_fig5(ax,x,y,i,j,a,exps_to_plot,x_label) :
'''
Function plots no.of synapses vs NMDA voltage amplitude (Fig 5c plots)
ax : axes to plot
x : x-values = number of synapses
y : y-values = NMDA response amplitudes
i : 0 or 1 (SR or SLM dendrite)
j : dendrite index for accessing voltages (in this simulation example just need 'a' parameter)
a : example dendrite index (0-2)
exps_to_plot : 0-5 index from experiment list
x_label : x-axis label
'''
for k,exp in enumerate(exps_to_plot) :
ax.plot(x,y[i][a][exp],"-",label=experiment[exp], color = colors[exp], linewidth=1) #plot soma
if i ==0 and a==0 :
ax.set_xlabel(x_label)
else:
ax.set_xticklabels([])
ax.set_xlim(xmin=0)
ax.set_ylim(ymin=0,ymax=70)
if i ==1 and a==2 :
ax.legend()
save_exps = ["Control", "ACh", "Ka", "Km", "Kca", "Kir"] #experiment simulations
'''Can choose which 2 experiment simulations to plot'''
exps_to_plot = ["Control","ACh"] #choose which experiments to plot in Figure 5b+c
exp_index = [save_exps.index(a) for a in exps_to_plot]
plt.rcParams.update({'font.size': 10})
plt.rc('ytick', labelsize=8) # fontsize of the tick labels
fig = plt.figure(figsize = (5,8))
gs1 = fig.add_gridspec(nrows=6, ncols=2,left=0.12,right = 0.60, wspace=0.0005, hspace = 0.1)
gs2 = fig.add_gridspec(nrows=6, ncols=1, left=0.72, right=0.99, wspace=0.0, hspace = 0.2)
for i,r in enumerate(example_dends) :
for a,j in enumerate(r) :
total = (len(example_dends)*len(r)) - 1
ax = fig.add_subplot(gs1[total- ((i*len(r))+a),0]) #control
plot_eg_voltage_traces(ax,dend_volts, i,j,a,exp_index[0], 0,-90,20,0,70)
ax = fig.add_subplot(gs1[total- ((i*len(r))+a),1]) #ACh
plot_eg_voltage_traces(ax,dend_volts, i,j,a,exp_index[1],0,-90,20,0,70)
ax = fig.add_subplot(gs2[total- ((i*len(r))+a),0])
plot_weight_vs_amps_fig5(ax,num_synapses,nmda_amps_dend,i,j,a,exp_index,"Number of\nsynapses")
fig.text(0.63, 0.5, 'Amplitude of NMDA voltage response (mV)', va='center', rotation='vertical', size=10)
fig.text(0.01, 0.5, 'Voltage (mV)', va='center', rotation='vertical', size=10)
plt.savefig("example_traces.png",dpi=600)
plt.show()