-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnonlinearity_all_dends.py
361 lines (311 loc) · 16.1 KB
/
nonlinearity_all_dends.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 3 19:19:06 2020
@author: rh17872 - Rachel Humphries
Stimulates increasing numbers of AMPA/NMDA inputs on each dendritic section in the SR/SLM region.
Produces data used in Figures 3 and 4 of paper:
Rachel Humphries, Jack R. Mellor, Cian O'Donnell,
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model,
Neuroscience, 2021,ISSN 0306-4522
https://doi.org/10.1016/j.neuroscience.2021.11.014
"""
import numpy as np
from neuron import h
from neuron.units import ms, mV
h.load_file('stdrun.hoc')
import ca3_synapse_functions as csf
import pickle
pickle_file = "nonlin_outputs.pkl" #pickle file to save outputs
regions = ["SR","SLM"]
'''Synapse parameters'''
syn_ISIs = 1 #interspike interval
syn_density = 1 #ums between each synapse 0,1,2,5
syn_NAratios = [0.5] #AMPA to NMDA ratio
experiment = [str(x)+" AMPA:NMDA" for x in syn_NAratios] #for testing different AMPA:NMDA ratios
n_ac_syn = [5,16] #NMDA rise and decay times in SR dendrites
a_ac_syn = [0.5,1.5] #AMPA rise and decay times in SR dendrites
n_pp_syn = [5,16] #NMDA rise and decay times in SLM dendrites
a_pp_syn = [0.5,1.5] #AMPA rise and decay times in SLM dendrites
total_cond_ac = 0.0035*0.5
total_cond_pp = 0.0035*0.5
a_ac_weights, n_ac_weights = csf.calculate_synapse_weights(syn_NAratios,total_cond_ac, "AC")
a_pp_weights, n_pp_weights = csf.calculate_synapse_weights(syn_NAratios,total_cond_pp, "PP")
for i,x in enumerate(a_ac_weights) :
print ("AC AMPA:NMDA ratios :", x/n_ac_weights[i] )
print ("PP AMPA:NMDA ratios :", a_pp_weights[i]/n_pp_weights[i])
'''Stimulation parameters'''
total_syns = 20 # must be an even number
step = 1
num_synapses = range(step,total_syns+1,step)
syn_density = 1 #number of ums between synapses
stim_num = 1 #number of stims
stim_start = 810 #start of stim (ms)
stim_noise = 0 #noise of stim
stim_interval = 20 #interval between stims (20ms = 50hz)
'''Parameters from optimisation'''
optimiser = [5.557118781038023e-11, 0.0011114634012579765, 0.0011580392555217256, 3.472924393529932e-06, 4.403602806593143e-10, 4.616466181142678e-09, 5.583387888166266e-06, 5.5750027000813285, -29.999999524116564, 30.0, 30.0, -48.167858484536445, 0.5, 0.5, 0.5, 0.20000188521088813]
gka =optimiser[0]#random.uniform(0.01,1) #0.8 #0.02
gkm = optimiser[1]#random.uniform(0.001,0.1)#0.1 #0.017 #0.03
gkca =optimiser[2]#random.uniform(0.001,0.1)#0.01 #0.001
gkir =optimiser[3]#random.uniform(0.0001,0.01)#0.001 #0.00015 #1.44e-4
gpas =optimiser[4]#random.uniform(0.0004,0.04)#0.0004 #4e-8
gkdr = optimiser[5]
gih = optimiser[6]
ka_sh = optimiser[7]
km_sh = optimiser[8]#random.uniform(0,25)
ih_sh = optimiser[9]#random.uniform(0,25)
kir_sh = optimiser[10]#random.uniform(0,25)
epas = optimiser[11] #-60.
ka_ach_block = optimiser[12] #random.uniform(0.,0.2)
km_ach_block = optimiser[13] #random.uniform(0.,0.2)
kca_ach_block = optimiser[14] #random.uniform(0.,0.2)
kir_ach_block = optimiser[15]#random.uniform(0.,0.2)
gkd = 0.0
'''Set up neuron model parameters and conductances'''
h('{Vrest = -75.}')
h('{vrest_val = -75.}')
h('{tstop=1000}')
h('{epas = -70}')
h('{epas_val = -70}')
#h('{Rm = 50740}')
#h('{rm_val = 50740}')
h('{Cm = 0.7}')
h('{RaAll= 150}')
h('{gpas = 1/25370}')
h('{gpas_val = 1/25370}')
h('AXONM = 5')
h('{gna = 0.0}')
h('{gkdr = 0.005}') #0.00518 #0.125
h('{gkdr_val = 0.005}') #0.00518 #0.125
h('{KMULT = 0.02}') #Ka conductance
h('{gka_val = 0.02}') #Ka conductance
h('{gkm=0.017}')
h('{gkm_val=0.017}')
h('{gkir=1.44e-05}')
h('{gkir_val=1.44e-05}')
h('{gkd=0.0}')
h('{gkd_val=0.0}')
h('{gc=1.e-5}')
h('{gcal=gc}') #1.0659e-5 #0.000507
h('{gcal_val=gc}') #1.0659e-5 #0.000507
h('{gcat=gc}') #5.984e-7 #4.554e-7
h('{gcat_val=gc}') #5.984e-7 #4.554e-7
h('{gcan=gc}') #3.791e-5 #0.000165
h('{gcan_val=gc}') #3.791e-5 #0.000165
h('{gKc=5e-5}') #0.000111 #0.00412
h('{gKc_val=5e-5}')
#h('{gkc_val=5e-5}')
h('{gkcas=0.001}')
h('{gkcas_val=0.001}')
h('{gahp=0.0001}') #0.000511 #0.00179
h('{gahp_val=0.0001}')
h('{ghd=0.00001}') #6.529e-5 #9.578e-5
h('{ghd_val=0.00001}')
h('km_sh = 0')
h('km_sh_val = 0')
h('ka_sh = 0')
h('ka_sh_val = 0')
h('kir_sh = 0')
h('kir_sh_val = 0')
h('ih_sh = 0')
h('ih_sh_val = 0')
h('na_block = 1.')
h('na_block_val = 1.')
h('ka_block = 1.')
h('ka_block_val = 1.')
h.load_file('ca3b-cell1zr-fig9b.hoc')
h.gpas_val = gpas
h.epas_val = epas
#h.rm_val = rm
h.gka_val = gka
h.ka_block_val = 1.
if gka == 0.:
h.ka_block_val = 0.
h.na_block_val = 1.
if h.gna == 0.:
h.na_block_val = 0.
h.gkm_val = gkm
h.gkcas_val = gkca
h.gkir_val = gkir
h.gkdr_val = gkdr
h.ghd_val = gih
h.km_sh_val = km_sh
h.ka_sh_val= ka_sh
h.kir_sh_val= kir_sh
h.ih_sh_val = ih_sh
h.dt = 1.
dt = 1.
'''Divide dendrites into regions based on distance from soma'''
h.distance(sec=h.soma[0]) #set the origin at the soma
sl_sr_bound = 150
sr_slm_bound = 400
rel = 0.5
sl_dends = []
sr_dends = []
slm_dends = []
sl_dends, sr_dends, slm_dends = csf.divide_dends(rel,sl_sr_bound,sr_slm_bound,sl_dends,sr_dends,slm_dends)
so_dends = range(int(h.numbasal)) #basal dendrites
all_dends = [so_dends, sl_dends, sr_dends, slm_dends]
'''Identify dendrite sections longer than 20um to use in simulation'''
so_dend_200 = []
for d in so_dends :
if h.dendrite[d].L > 20 :
so_dend_200.append([d])
sr_dend_200 = [[d] for d in sr_dends if h.apical_dendrite[d].L > 20]
slm_dend_200 = [[d] for d in slm_dends if h.apical_dendrite[d].L > 20]
print ("SR dends: ", sr_dend_200)
print ("SLM dends: ", slm_dend_200)
all_dends_200 = []
all_dends_region = []
if "SO" in regions :
all_dends_200.append(so_dend_200)
all_dends_region.append(so_dends)
if "SR" in regions :
all_dends_200.append(sr_dend_200)
all_dends_region.append(sr_dends)
if "SLM" in regions :
all_dends_200.append(slm_dend_200)
all_dends_region.append(slm_dends)
'''Calculate dendrite diameters'''
dend_diams = csf.get_dend_diameters(all_dends_200, regions)
'''Set up lists'''
soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
soma_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_distances = [[[] for j in x]for x in all_dends_200]
irs = [[[]for j in x] for x in all_dends_200]
dend_centers = [[[]for j in x]for x in all_dends_200]
nmda_currs = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_dend_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_soma_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_dend_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
'''Run simulation'''
for r,region in enumerate(all_dends_200) : #loops through region
print ("Region: ", regions[r])
for j,dends in enumerate(region) : #loops through dendrite group
print ("Dendrites: ", dends)
if regions[r] == "SO" :
pos_per_dend, mid_dend,mid_syn_pos,ordered_pos = csf.synapse_positioning(h.dendrite,dends,syn_density,num_synapses[-1]) #finds dendrite positions on dendrite section
else :
pos_per_dend, mid_dend,mid_syn_pos,ordered_pos = csf.synapse_positioning(h.apical_dendrite,dends,syn_density,num_synapses[-1]) #finds dendrite positions on dendrite section
for s,nar in enumerate(syn_NAratios) : #loops through synapse densities.
print ("Synapse NA ratio: ", experiment[s])
for n in num_synapses : #loops through number of synapses to add
print ("Combined synapses: AMPA+NMDA" , n)
glu_syns = []
glu_netstim = []
glu_netcon = []
for ns in range(n) : #loops through each synapse to add - adds both AMPA + NMDA synapse
d = dends[ordered_pos[ns][0]]
p = pos_per_dend[ordered_pos[ns][0]][ordered_pos[ns][1]]
#print "Synapses: ", d, p
if regions[r] == "SO" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.dendrite[d],p,n_ac_weights[s],n_ac_syn[0],n_ac_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise) #stim_start+(syn_ISIs[0]*ns)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.dendrite[d],p,a_ac_weights[s],a_ac_syn[0],a_ac_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SR" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.apical_dendrite[d],p,n_ac_weights[s],n_ac_syn[0],n_ac_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_ac_weights[s],a_ac_syn[0],a_ac_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SLM" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.apical_dendrite[d],p,n_pp_weights[s],n_pp_syn[0],n_pp_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_pp_weights[s],a_pp_syn[0],a_pp_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
soma_v = h.Vector().record(h.soma[0](0.5)._ref_v,dt) #set up hoc vector to record somatic voltage
# set up hoc vector to record dendritic voltage
if regions[r] == "SO" :
dend_v = h.Vector().record(h.dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
else:
dend_v = h.Vector().record(h.apical_dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
t = h.Vector().record(h._ref_t,dt) #record time
nmda_sing_syns = [] # for the individual synaptic currents
for syn in glu_syns[0::2]: #for recording NMDA currents
tmp = h.Vector()
tmp.record(syn._ref_i,dt)
nmda_sing_syns.append(tmp)
h.fig9b() #calls the function in the hoc file to run the simulation
soma_v = np.array(soma_v)
dend_v = np.array(dend_v)
#saves data to lists
soma_volts[r][j][s].append(soma_v)
dend_volts[r][j][s].append(dend_v)
soma_peaks[r][j][s].append(max(soma_v[int(stim_start/dt):]))
dend_peaks[r][j][s].append(max(dend_v[int(stim_start/dt):]))
inmda_total = np.zeros(len(t))
for curr in nmda_sing_syns:
inmda_total += curr.as_numpy()
nmda_currs[r][j][s].append(inmda_total)
'''Repeats simulation with only AMPA synapses'''
for n in num_synapses : #loops through number of synapses to add
print ("Only AMPA" , n)
glu_syns = []
glu_netstim = []
glu_netcon = []
for ns in range(n) : #loops through each synapse to add
d = dends[ordered_pos[ns][0]]
p = pos_per_dend[ordered_pos[ns][0]][ordered_pos[ns][1]]
#print "Synapses: ", d, p
if regions[r] == "SO" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.dendrite[d],p,a_ac_weights[s],a_ac_syn[0],a_ac_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SR" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_ac_weights[s],a_ac_syn[0],a_ac_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SLM" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_pp_weights[s],a_pp_syn[0],a_pp_syn[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
soma_v = h.Vector().record(h.soma[0](0.5)._ref_v,dt)
if regions[r] == "SO" :
dend_v = h.Vector().record(h.dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
else:
dend_v = h.Vector().record(h.apical_dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
t = h.Vector().record(h._ref_t,dt)
h.fig9b() #calls the function in the hoc file to run the simulation
soma_v = np.array(soma_v)
dend_v = np.array(dend_v)
#saves data to lists
ampa_soma_volts[r][j][s].append(soma_v)
ampa_dend_volts[r][j][s].append(dend_v)
ampa_soma_peaks[r][j][s].append(max(soma_v[int(stim_start/dt):]))
ampa_dend_peaks[r][j][s].append(max(dend_v[int(stim_start/dt):]))
freq=0
rin= h.Impedance() # does not measure resting Rin here
rin.compute(freq,1)
if regions[r] == "SO" :
input_imp = rin.input(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.dendrite[dends[ordered_pos[0][0]]])
else:
input_imp = rin.input(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.apical_dendrite[dends[ordered_pos[0][0]]])
irs[r][j].append(input_imp)
if regions[r] == "SO" :
dend_distances[r][j].append(-h.distance(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.dendrite[dends[ordered_pos[0][0]]]))
else :
dend_distances[r][j].append(h.distance(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.apical_dendrite[dends[ordered_pos[0][0]]]))
dend_centers[r][j].append(dends[ordered_pos[0][0]])
dend_centers[r][j].append(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])
for i,r in enumerate(irs):
for j,d in enumerate(r) :
print (regions[i], "IRs ", all_dends_200[i][j], d )
time = np.array(t)
with open(pickle_file, 'wb') as f: # Python 3: open(..., 'wb')
pickle.dump([all_dends_200,soma_volts, dend_volts, dt, time, irs, soma_peaks, dend_peaks, nmda_currs, ampa_soma_peaks,ampa_dend_peaks,ampa_soma_volts, ampa_dend_volts,dend_distances,sr_dend_200,slm_dend_200,dend_diams,so_dends,sl_dends,sr_dends,slm_dends], f)
f.close()
'''
Pickle file data
all_dends_200 : dendrite sections used in simulation
soma_volts : somatic voltages of each simulation (mv)
dend_volts : dendritic voltages of stimulated dendrite (mv)
dt : simulation timestep (ms)
time : time
irs : input resistance during simulation (Mohm)
soma_peaks : peak of each somatic voltage trace (mv)
dend_peaks : peak of each dendritic voltage trace (mv)
nmda_currs : NMDA current
ampa_soma_peaks : peak of AMPA only simulations recorded at soma (mv)
ampa_dend_peaks : peak of AMPA only simulations recorded in dendrites (mv)
ampa_soma_volts : somatic voltages of each AMPA-only simulation (mv)
ampa_dend_volts : AMPA-only dendritic voltages of stimulated dendrite (mv)
dend_distances : distance of stimulated dendrites from soma (um)
sr_dend_200 : SR dendrite sections used in simulation
slm_dend_200 : SLM dendrite sections used in simulation
dend_diams : dendrite diameters
so_dends : all SO dendrite sections
sl_dends : all SL dendrite sections
sr_dends : all SR dendrite sections
slm_dends : all SLM dendrite sections
'''