-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathins_Fig7BC.py
59 lines (46 loc) · 3 KB
/
ins_Fig7BC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
from scipy.signal import cwt, morlet2
import matplotlib.pyplot as plt
from funcs import *
"""#Uncomment for redo simulations
Nnets = 15;
Ncycs = 30;
for fsin in [4,8]:
v=[]
for gsin in [0.5,1,2,3,4,5,6,7,8,9,10]:
dt = .1;
Ess = [-75.]#[-75.,-55.];
Ntcyc = int(np.round(125./dt)); # Number of points per theta cycle
phases = np.linspace(-np.pi,+np.pi,Ntcyc); # Values of phases within ones cycle. -PI and +PI for minima of externl input, 0 for the maxima.
fs = np.arange(50.,450.1,3.);
rateses = [ [ np.loadtxt("RatesFig7/rates_Esm%d_cm%d_%dHzgChR%d.dat" % (int(np.round(-Es)),kcm,int(fsin),int(gsin))) for kcm in range(Nnets) ] for Es in Ess ];
cwtPowses = [ [ compPWT(rateses[kEs][kcm][-Ncycs*Ntcyc:],dt=dt*1.e-3,fs=fs) for kcm in range(Nnets) ] for kEs in range(len(Ess)) ];
max_powers = [ [ np.max(cwtPowses[kEs][kcm]) for kcm in range(Nnets) ] for kEs in range(len(Ess)) ];
maxPowses = np.array([ np.array([ np.array([ np.max( cwtPowses[kEs][kcm][:,kcyc*Ntcyc:kcyc*Ntcyc+Ntcyc] ) for kcyc in range(Ncycs) ]) for kcm in range(Nnets) ]) for kEs in range(len(Ess)) ]);
kcycs_act_hyp = [ [ kcyc for kcyc in range(Ncycs) if np.max(cwtPowses[0][kcm][:,kcyc*Ntcyc:kcyc*Ntcyc+Ntcyc])>.3*max_powers[0][kcm] ] for kcm in range(Nnets) ];
fpmaxes_hyp = [ [ np.min( fs[np.where( cwtPowses[0][kcm][:,kcyc*Ntcyc:(kcyc+1)*Ntcyc] > (1.-1.e-6)*np.max(cwtPowses[0][kcm][:,kcyc*Ntcyc:(kcyc+1)*Ntcyc]) )[0]] ) for kcyc in kcycs_act_hyp[kcm] ] for kcm in range(Nnets) ];
#fpmaxes_shu = [ [ np.min( fs[np.where( cwtPowses[1][kcm][:,kcyc*Ntcyc:(kcyc+1)*Ntcyc] > (1.-1.e-6)*np.max(cwtPowses[1][kcm][:,kcyc*Ntcyc:(kcyc+1)*Ntcyc]) )[0]] ) for kcyc in range(Ncycs) ] for kcm in range(Nnets) ];
meansfs_hyp = [ np.mean([ fpmaxes_hyp[kcm][kcyc] for kcyc in range(len(kcycs_act_hyp[kcm])) ]) for kcm in range(Nnets) ];
stdsfs_hyp = [ np.std([ fpmaxes_hyp[kcm][kcyc] for kcyc in range(len(kcycs_act_hyp[kcm])) ]) for kcm in range(Nnets) ];
#meansfs_shu = [ np.mean([ fpmaxes_shu[kcm][kcyc] for kcyc in range(Ncycs) ]) for kcm in range(Nnets) ];
#stdsfs_shu = [ np.std([ fpmaxes_shu[kcm][kcyc] for kcyc in range(Ncycs) ]) for kcm in range(Nnets) ];
v.append([gsin,np.mean(maxPowses[0],axis=1)[0], np.std(maxPowses[0],axis=1)[0], meansfs_hyp[0], stdsfs_hyp[0] ])
np.savetxt("PowFreq_%dHz.dat" % int(fsin), v)
"""
es = 0
for fsin in [8,4]:
Vector = np.loadtxt("PowFreq_%dHz.dat" % int(fsin))
tmp = plt.subplot(2,2,1+2*es);
tmp = plt.title("Freq %d Hz" % int(fsin))
tmp = plt.errorbar(Vector[:,0],Vector[:,3],yerr=Vector[:,4],fmt="x-");
tmp = plt.xlabel("gChr (nS)"); tmp = plt.ylabel("Max Amplitude Network Frequency (Hz)");
tmp = plt.ylim([0,300])
tmp = plt.subplot(2,2,2+2*es);
tmp = plt.title("Freq %d Hz" % int(fsin))
tmp = plt.errorbar(Vector[:,0],Vector[:,1],yerr=Vector[:,2],fmt="x-");
tmp = plt.xlabel("gChr (nS)"); tmp = plt.ylabel("Max Amplitude Power (u.a.)");
tmp = plt.ylim([0,2.5e+6])
es+=1
tmp = plt.tight_layout()
tmp = plt.savefig("Figures/Fig7BC.png")
tmp = plt.savefig("Figures/Fig7BC.eps")