-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkv1.mod
123 lines (87 loc) · 2.02 KB
/
kv1.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
TITLE Voltage-gated low threshold potassium current from Kv1 subunits
COMMENT
NEURON implementation of a potassium channel from Kv1.1 subunits
Kinetical scheme: Hodgkin-Huxley m^4, no inactivation
Kinetic data taken from: Zerr et al., J.Neurosci. 18 (1998) 2842
Vhalf = -28.8 +/- 2.3 mV; k = 8.1 +/- 0.9 mV
The voltage dependency of the rate constants was approximated by:
alpha = ca * exp(-(v+cva)/cka)
beta = cb * exp(-(v+cvb)/ckb)
Parameters ca, cva, cka, cb, cvb, ckb
are defined in the CONSTANT block.
Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute, Wako City, Japan
http://www.neurodynamics.brain.riken.jp
Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602
Date of Implementation: April 2005
Contact: akemann@brain.riken.jp
ENDCOMMENT
NEURON {
SUFFIX Kv1
USEION k READ ek WRITE ik
RANGE gk, gbar, ik
GLOBAL ninf, taun
}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(nA) = (nanoamp)
(pA) = (picoamp)
(S) = (siemens)
(nS) = (nanosiemens)
(pS) = (picosiemens)
(um) = (micron)
(molar) = (1/liter)
(mM) = (millimolar)
}
CONSTANT {
q10 = 3
ca = 0.12889 (1/ms)
cva = 45 (mV)
cka = -33.90877 (mV)
cb = 0.12889 (1/ms)
cvb = 45 (mV)
ckb = 12.42101 (mV)
}
PARAMETER {
v (mV)
celsius (degC)
gbar = 0.011 (mho/cm2) <0,1e9>
}
ASSIGNED {
ik (mA/cm2)
ek (mV)
gk (mho/cm2)
ninf
taun (ms)
alphan (1/ms)
betan (1/ms)
qt
}
STATE { n }
INITIAL {
qt = q10^((celsius-22 (degC))/10 (degC))
rates(v)
n = ninf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gk = gbar * n^4
ik = gk * (v - ek)
}
DERIVATIVE states {
rates(v)
n' = (ninf-n)/taun
}
PROCEDURE rates(v (mV)) {
alphan = alphanfkt(v)
betan = betanfkt(v)
ninf = alphan/(alphan+betan)
taun = 1/(qt*(alphan + betan))
}
FUNCTION alphanfkt(v (mV)) (1/ms) {
alphanfkt = ca * exp(-(v+cva)/cka)
}
FUNCTION betanfkt(v (mV)) (1/ms) {
betanfkt = cb * exp(-(v+cvb)/ckb)
}