Skip to content

Pytorch implementation of MPNN for Quantum Chemistry

License

Notifications You must be signed in to change notification settings

MohaiminDev/mpnn-gnn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Message Passing for Quantum Chemistry - PyTorch

Implementation of MPNN for Quantum Chemistry, in PyTorch.

Original Code (Tensorflow)

Talk by Justin Gilmer

Usage

import torch
from mpnn import MPNN

mpnn = MPNN(
    input_dim=11,
    output_dim=1,
    num_edge_class=5,
    node_dim=50,
    num_propagation_steps=6,
    num_output_hidden_layers=1,
    edge_num_layers=4,
    edge_hidden_dim=50,
    hidden_dim=200,
    activation=torch.nn.ReLU
)

atoms = torch.randn(32, 30, 11) # molecules with up to 30 atoms with 11 features
mask = torch.randint(0, 1, (32, 30)) # whether atom exists in molecule
bonds = torch.randint(0, 5, (32, 30, 30)) # bonds adjacency matrix
distance = torch.randn(32, 30, 30) # pairwise distance


out = mpnn(atoms, bonds, distance, mask) # (32, 1)

Todo

  • QM9 dataset reader
  • Basic trainer
  • set2set readout function

Citations

@inproceedings{gilmer2017neural,
  title={Neural message passing for quantum chemistry},
  author={Gilmer, Justin and Schoenholz, Samuel S and Riley, Patrick F and Vinyals, Oriol and Dahl, George E},
  booktitle={International conference on machine learning},
  pages={1263--1272},
  year={2017},
  organization={PMLR}
}

About

Pytorch implementation of MPNN for Quantum Chemistry

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%