forked from L-Reichardt/Cylinder3D-updated-CUDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validation_nuscenes.py
executable file
·150 lines (106 loc) · 5.57 KB
/
validation_nuscenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding:utf-8 -*-
# author: Xinge
# @file: train_cylinder_asym.py
import os
import time
import argparse
import sys
import numpy as np
import torch
import torch.optim as optim
from tqdm import tqdm
import yaml
from utils.metric_util import per_class_iu, fast_hist_crop
from dataloader.pc_dataset import get_nuScenes_label_name
from builder import data_builder, model_builder, loss_builder
from config.config import load_config_data
from utils.load_save_util import load_checkpoint, load_checkpoint_1b1
import warnings
warnings.filterwarnings("ignore")
OUTPUT_PATH = '/scratch/perstk/repos/cylinderical3d_testing/CylinderEVALUATION/output_nuscenes/'
def main(args):
#pytorch_device = torch.device('cuda:0')
pytorch_device =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
config_path = args.config_path
configs = load_config_data(config_path)
dataset_config = configs['dataset_params']
train_dataloader_config = configs['train_data_loader']
val_dataloader_config = configs['val_data_loader']
val_batch_size = 1
train_batch_size = train_dataloader_config['batch_size']
model_config = configs['model_params']
train_hypers = configs['train_params']
grid_size = model_config['output_shape']
num_class = model_config['num_class']
ignore_label = dataset_config['ignore_label']
model_load_path = train_hypers['model_load_path']
model_save_path = train_hypers['model_save_path']
with open(dataset_config["label_mapping"], 'r') as stream:
nuscenesyaml = yaml.safe_load(stream)
learning_map = nuscenesyaml['learning_map']
SemKITTI_label_name = get_nuScenes_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1]
my_model = model_builder.build(model_config)
if os.path.exists(model_load_path):
my_model = load_checkpoint_1b1(model_load_path, my_model)
my_model.to(pytorch_device)
optimizer = optim.Adam(my_model.parameters(), lr=train_hypers["learning_rate"])
# loss_func, lovasz_softmax = loss_builder.build(wce=True, lovasz=True,
# num_class=num_class, ignore_label=ignore_label)
train_dataset_loader, val_dataset_loader = data_builder.build(dataset_config,
train_dataloader_config,
val_dataloader_config,
grid_size=grid_size)
# training
epoch = 0
best_val_miou = 0
my_model.train()
global_iter = 0
check_iter = train_hypers['eval_every_n_steps']
if True:
my_model.eval()
hist_list = []
val_loss_list = []
counter=0
with torch.no_grad():
for i_iter_val, (_, val_vox_label, val_grid, val_pt_labs, val_pt_fea) in enumerate(
val_dataset_loader):
if(counter>=10):
break
val_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in
val_pt_fea]
val_grid_ten = [torch.from_numpy(i).to(pytorch_device) for i in val_grid]
val_label_tensor = val_vox_label.type(torch.LongTensor).to(pytorch_device)# ground truth
predict_labels = my_model(val_pt_fea_ten, val_grid_ten, val_batch_size) # model output
# loss = lovasz_softmax(torch.nn.functional.softmax(predict_labels).detach(), val_label_tensor,
# ignore=0) + loss_func(predict_labels.detach(), val_label_tensor)
predict_labels = torch.argmax(predict_labels, dim=1)
predict_labels = predict_labels.cpu().detach().numpy()
val_label_tensor = val_label_tensor.cpu().detach().numpy()
for count, i_val_grid in enumerate(val_grid):
# hist_list.append(fast_hist_crop(predict_labels[
# count, val_grid[count][:, 0], val_grid[count][:, 1],
# val_grid[count][:, 2]], val_pt_labs[count],
# unique_label))
labels = np.vectorize(learning_map.__getitem__)(predict_labels[count, val_grid[count][:, 0], val_grid[count][:, 1], val_grid[count][:, 2]])
labels = labels.astype('uint32')
ground_truth = np.vectorize(learning_map.__getitem__)(val_label_tensor[count, val_grid[count][:, 0], val_grid[count][:, 1], val_grid[count][:, 2]])
ground_truth = ground_truth.astype('uint32')
save_dir=OUTPUT_PATH
output_path_label = save_dir +'label_'+ str(counter).zfill(6) + '.label'
output_path_truth = save_dir + 'truth_'+str(counter).zfill(6) + '.label'
labels.tofile(output_path_label)
ground_truth.tofile(output_path_truth)
# print("save " + output_path_label)
#print("\n\n BIN_NAME: ", bin_name, "\n\n")
counter+=1
print("COUNTER = ",counter)
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('-y', '--config_path', default='config/nuScenes.yaml')
args = parser.parse_args()
print(' '.join(sys.argv))
print(args)
main(args)