-
Notifications
You must be signed in to change notification settings - Fork 3
/
bot.py
109 lines (88 loc) · 3.83 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import streamlit as st
from typing import Generator
from groq import Groq
st.set_page_config(page_icon="⚡", layout="wide", page_title="Infonet-charged")
def icon(emoji: str):
"""Shows an emoji as a Notion-style page icon."""
st.write(f'<span style="font-size: 78px; line-height: 1">{emoji}</span>', unsafe_allow_html=True)
icon("⚡")
st.subheader("Infonet-charged", divider="rainbow", anchor=False)
client = Groq(api_key=st.secrets["GROQ_API_KEY"])
# Initialize chat history and selected model
if "messages" not in st.session_state:
st.session_state.messages = []
if "selected_model" not in st.session_state:
st.session_state.selected_model = None
# Define model details
models = {
"gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"},
"llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"},
"llama3-70b-8192": {"name": "LLaMA3-70b-8192", "tokens": 8192, "developer": "Meta"},
"llama3-8b-8192": {"name": "LLaMA3-8b-8192", "tokens": 8192, "developer": "Meta"},
"mixtral-8x7b-32768": {"name": "Mixtral-8x7b-Instruct-v0.1", "tokens": 32768, "developer": "Mistral"},
}
# Layout for model selection and max_tokens slider
col1, col2 = st.columns(2)
with col1:
model_option = st.selectbox(
"Choose a model:",
options=list(models.keys()),
format_func=lambda x: models[x]["name"],
index=4 # Default to mixtral
)
# Detect model change and clear chat history if model has changed
if st.session_state.selected_model != model_option:
st.session_state.messages = []
st.session_state.selected_model = model_option
max_tokens_range = models[model_option]["tokens"]
with col2:
# Adjust max_tokens slider dynamically based on the selected model
max_tokens = st.slider(
"Max Tokens:",
min_value=512, # Minimum value to allow some flexibility
max_value=max_tokens_range,
# Default value or max allowed if less
value=min(32768, max_tokens_range),
step=512,
help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}"
)
# Display chat messages from history on app rerun
for message in st.session_state.messages:
avatar = '🤖' if message["role"] == "assistant" else '🦁'
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
"""Yield chat response content from the Groq API response."""
for chunk in chat_completion:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
def get_response(prompt: str, model: str, max_tokens: int) -> str:
"""Fetch response from Groq API and return the full response."""
try:
chat_completion = client.chat.completions.create(
model=model,
messages=[
{
"role": m["role"],
"content": m["content"]
}
for m in st.session_state.messages
],
max_tokens=max_tokens,
stream=True
)
chat_responses_generator = generate_chat_responses(chat_completion)
full_response = "".join(chat_responses_generator)
return full_response
except Exception as e:
st.error(e, icon="🚨")
return ""
if prompt := st.chat_input("Enter your prompt here..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar='🦁'):
st.markdown(prompt)
response = get_response(prompt, model_option, max_tokens)
if response:
st.session_state.messages.append({"role": "assistant", "content": response})
with st.chat_message("assistant", avatar="🤖"):
st.markdown(response)