-
Notifications
You must be signed in to change notification settings - Fork 635
/
Travel Sales Person.py
100 lines (81 loc) · 3.72 KB
/
Travel Sales Person.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""
Visualize Genetic Algorithm to find the shortest path for travel sales problem.
Visit my tutorial website for more: https://mofanpy.com/tutorials/
"""
import matplotlib.pyplot as plt
import numpy as np
N_CITIES = 20 # DNA size
CROSS_RATE = 0.1
MUTATE_RATE = 0.02
POP_SIZE = 500
N_GENERATIONS = 500
class GA(object):
def __init__(self, DNA_size, cross_rate, mutation_rate, pop_size, ):
self.DNA_size = DNA_size
self.cross_rate = cross_rate
self.mutate_rate = mutation_rate
self.pop_size = pop_size
self.pop = np.vstack([np.random.permutation(DNA_size) for _ in range(pop_size)])
def translateDNA(self, DNA, city_position): # get cities' coord in order
line_x = np.empty_like(DNA, dtype=np.float64)
line_y = np.empty_like(DNA, dtype=np.float64)
for i, d in enumerate(DNA):
city_coord = city_position[d]
line_x[i, :] = city_coord[:, 0]
line_y[i, :] = city_coord[:, 1]
return line_x, line_y
def get_fitness(self, line_x, line_y):
total_distance = np.empty((line_x.shape[0],), dtype=np.float64)
for i, (xs, ys) in enumerate(zip(line_x, line_y)):
total_distance[i] = np.sum(np.sqrt(np.square(np.diff(xs)) + np.square(np.diff(ys))))
fitness = np.exp(self.DNA_size * 2 / total_distance)
return fitness, total_distance
def select(self, fitness):
idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness / fitness.sum())
return self.pop[idx]
def crossover(self, parent, pop):
if np.random.rand() < self.cross_rate:
i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop
cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points
keep_city = parent[~cross_points] # find the city number
swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)]
parent[:] = np.concatenate((keep_city, swap_city))
return parent
def mutate(self, child):
for point in range(self.DNA_size):
if np.random.rand() < self.mutate_rate:
swap_point = np.random.randint(0, self.DNA_size)
swapA, swapB = child[point], child[swap_point]
child[point], child[swap_point] = swapB, swapA
return child
def evolve(self, fitness):
pop = self.select(fitness)
pop_copy = pop.copy()
for parent in pop: # for every parent
child = self.crossover(parent, pop_copy)
child = self.mutate(child)
parent[:] = child
self.pop = pop
class TravelSalesPerson(object):
def __init__(self, n_cities):
self.city_position = np.random.rand(n_cities, 2)
plt.ion()
def plotting(self, lx, ly, total_d):
plt.cla()
plt.scatter(self.city_position[:, 0].T, self.city_position[:, 1].T, s=100, c='k')
plt.plot(lx.T, ly.T, 'r-')
plt.text(-0.05, -0.05, "Total distance=%.2f" % total_d, fontdict={'size': 20, 'color': 'red'})
plt.xlim((-0.1, 1.1))
plt.ylim((-0.1, 1.1))
plt.pause(0.01)
ga = GA(DNA_size=N_CITIES, cross_rate=CROSS_RATE, mutation_rate=MUTATE_RATE, pop_size=POP_SIZE)
env = TravelSalesPerson(N_CITIES)
for generation in range(N_GENERATIONS):
lx, ly = ga.translateDNA(ga.pop, env.city_position)
fitness, total_distance = ga.get_fitness(lx, ly)
ga.evolve(fitness)
best_idx = np.argmax(fitness)
print('Gen:', generation, '| best fit: %.2f' % fitness[best_idx],)
env.plotting(lx[best_idx], ly[best_idx], total_distance[best_idx])
plt.ioff()
plt.show()