-
Notifications
You must be signed in to change notification settings - Fork 5k
/
A3C.py
214 lines (175 loc) · 8.42 KB
/
A3C.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Environment is a Robot Arm. The arm tries to get to the blue point.
The environment will return a geographic (distance) information for the arm to learn.
The far away from blue point the less reward; touch blue r+=1; stop at blue for a while then get r=+10.
You can train this RL by using LOAD = False, after training, this model will be store in the a local folder.
Using LOAD = True to reload the trained model for playing.
You can customize this script in a way you want.
View more on [莫烦Python] : https://morvanzhou.github.io/tutorials/
Requirement:
pyglet >= 1.2.4
numpy >= 1.12.1
tensorflow >= 1.0.1
"""
import multiprocessing
import threading
import tensorflow as tf
import numpy as np
from arm_env import ArmEnv
# np.random.seed(1)
# tf.set_random_seed(1)
MAX_GLOBAL_EP = 2000
MAX_EP_STEP = 300
UPDATE_GLOBAL_ITER = 5
N_WORKERS = multiprocessing.cpu_count()
LR_A = 1e-4 # learning rate for actor
LR_C = 2e-4 # learning rate for critic
GAMMA = 0.9 # reward discount
MODE = ['easy', 'hard']
n_model = 1
GLOBAL_NET_SCOPE = 'Global_Net'
ENTROPY_BETA = 0.01
GLOBAL_RUNNING_R = []
GLOBAL_EP = 0
env = ArmEnv(mode=MODE[n_model])
N_S = env.state_dim
N_A = env.action_dim
A_BOUND = env.action_bound
del env
class ACNet(object):
def __init__(self, scope, globalAC=None):
if scope == GLOBAL_NET_SCOPE: # get global network
with tf.variable_scope(scope):
self.s = tf.placeholder(tf.float32, [None, N_S], 'S')
self._build_net()
self.a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/actor')
self.c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic')
else: # local net, calculate losses
with tf.variable_scope(scope):
self.s = tf.placeholder(tf.float32, [None, N_S], 'S')
self.a_his = tf.placeholder(tf.float32, [None, N_A], 'A')
self.v_target = tf.placeholder(tf.float32, [None, 1], 'Vtarget')
mu, sigma, self.v = self._build_net()
td = tf.subtract(self.v_target, self.v, name='TD_error')
with tf.name_scope('c_loss'):
self.c_loss = tf.reduce_mean(tf.square(td))
with tf.name_scope('wrap_a_out'):
self.test = sigma[0]
mu, sigma = mu * A_BOUND[1], sigma + 1e-5
normal_dist = tf.contrib.distributions.Normal(mu, sigma)
with tf.name_scope('a_loss'):
log_prob = normal_dist.log_prob(self.a_his)
exp_v = log_prob * td
entropy = normal_dist.entropy() # encourage exploration
self.exp_v = ENTROPY_BETA * entropy + exp_v
self.a_loss = tf.reduce_mean(-self.exp_v)
with tf.name_scope('choose_a'): # use local params to choose action
self.A = tf.clip_by_value(tf.squeeze(normal_dist.sample(1), axis=0), *A_BOUND)
with tf.name_scope('local_grad'):
self.a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/actor')
self.c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic')
self.a_grads = tf.gradients(self.a_loss, self.a_params)
self.c_grads = tf.gradients(self.c_loss, self.c_params)
with tf.name_scope('sync'):
with tf.name_scope('pull'):
self.pull_a_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.a_params, globalAC.a_params)]
self.pull_c_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.c_params, globalAC.c_params)]
with tf.name_scope('push'):
self.update_a_op = OPT_A.apply_gradients(zip(self.a_grads, globalAC.a_params))
self.update_c_op = OPT_C.apply_gradients(zip(self.c_grads, globalAC.c_params))
def _build_net(self):
w_init = tf.contrib.layers.xavier_initializer()
with tf.variable_scope('actor'):
l_a = tf.layers.dense(self.s, 400, tf.nn.relu6, kernel_initializer=w_init, name='la')
l_a = tf.layers.dense(l_a, 300, tf.nn.relu6, kernel_initializer=w_init, name='la2')
mu = tf.layers.dense(l_a, N_A, tf.nn.tanh, kernel_initializer=w_init, name='mu')
sigma = tf.layers.dense(l_a, N_A, tf.nn.softplus, kernel_initializer=w_init, name='sigma')
with tf.variable_scope('critic'):
l_c = tf.layers.dense(self.s, 400, tf.nn.relu6, kernel_initializer=w_init, name='lc')
l_c = tf.layers.dense(l_c, 200, tf.nn.relu6, kernel_initializer=w_init, name='lc2')
v = tf.layers.dense(l_c, 1, kernel_initializer=w_init, name='v') # state value
return mu, sigma, v
def update_global(self, feed_dict): # run by a local
_, _, t = SESS.run([self.update_a_op, self.update_c_op, self.test], feed_dict) # local grads applies to global net
return t
def pull_global(self): # run by a local
SESS.run([self.pull_a_params_op, self.pull_c_params_op])
def choose_action(self, s): # run by a local
s = s[np.newaxis, :]
return SESS.run(self.A, {self.s: s})[0]
class Worker(object):
def __init__(self, name, globalAC):
self.env = ArmEnv(mode=MODE[n_model])
self.name = name
self.AC = ACNet(name, globalAC)
def work(self):
global GLOBAL_RUNNING_R, GLOBAL_EP
total_step = 1
buffer_s, buffer_a, buffer_r = [], [], []
while not COORD.should_stop() and GLOBAL_EP < MAX_GLOBAL_EP:
s = self.env.reset()
ep_r = 0
for ep_t in range(MAX_EP_STEP):
if self.name == 'W_0':
self.env.render()
a = self.AC.choose_action(s)
s_, r, done = self.env.step(a)
if ep_t == MAX_EP_STEP - 1: done = True
ep_r += r
buffer_s.append(s)
buffer_a.append(a)
buffer_r.append(r)
if total_step % UPDATE_GLOBAL_ITER == 0 or done: # update global and assign to local net
if done:
v_s_ = 0 # terminal
else:
v_s_ = SESS.run(self.AC.v, {self.AC.s: s_[np.newaxis, :]})[0, 0]
buffer_v_target = []
for r in buffer_r[::-1]: # reverse buffer r
v_s_ = r + GAMMA * v_s_
buffer_v_target.append(v_s_)
buffer_v_target.reverse()
buffer_s, buffer_a, buffer_v_target = np.vstack(buffer_s), np.vstack(buffer_a), np.vstack(buffer_v_target)
feed_dict = {
self.AC.s: buffer_s,
self.AC.a_his: buffer_a,
self.AC.v_target: buffer_v_target,
}
test = self.AC.update_global(feed_dict)
buffer_s, buffer_a, buffer_r = [], [], []
self.AC.pull_global()
s = s_
total_step += 1
if done:
if len(GLOBAL_RUNNING_R) == 0: # record running episode reward
GLOBAL_RUNNING_R.append(ep_r)
else:
GLOBAL_RUNNING_R.append(0.9 * GLOBAL_RUNNING_R[-1] + 0.1 * ep_r)
print(
self.name,
"Ep:", GLOBAL_EP,
"| Ep_r: %i" % GLOBAL_RUNNING_R[-1],
'| Var:', test,
)
GLOBAL_EP += 1
break
if __name__ == "__main__":
SESS = tf.Session()
with tf.device("/cpu:0"):
OPT_A = tf.train.RMSPropOptimizer(LR_A, name='RMSPropA')
OPT_C = tf.train.RMSPropOptimizer(LR_C, name='RMSPropC')
GLOBAL_AC = ACNet(GLOBAL_NET_SCOPE) # we only need its params
workers = []
# Create worker
for i in range(N_WORKERS):
i_name = 'W_%i' % i # worker name
workers.append(Worker(i_name, GLOBAL_AC))
COORD = tf.train.Coordinator()
SESS.run(tf.global_variables_initializer())
worker_threads = []
for worker in workers:
job = lambda: worker.work()
t = threading.Thread(target=job)
t.start()
worker_threads.append(t)
COORD.join(worker_threads)