This is project for exploration about Machine Learning Lifecycle in Classification Image Task
│
├── Figures <- Example Image for input and output
│
│
├── src <- Source code
│ ├── data <- Data scripts
│ ├── models <- Model scripts
│ ├── metrics <- Calculation metrics scripts
│ ├── pipelines <- Machine learning pipeline for training and evaluation scripts
│ ├── api <- Endpoint script
│ ├── services <- Service script
│ ├── utils.py <- Utility scripts
|
|
│
├── Dockerfile <- Containerization
├── docker-compose.yml <- Container Orchestration
├── app.py <- Run API Endpoint
├── run_training.py <- Run Training Pipeline
├── run_evaluation.py <- Run Evaluation Pipeline
├── predict_sample.py <- Example code how to predict image
├── .gitignore <- List of files ignored by git
├── requirements.txt <- List python dependencies
├── setup.sh <- File for set up python dependencies
└── README.md
- Docker
- Docker Compose
- Clone the repository:
git clone https://github.com/MuhFaridanSutariya/anti-spoofing.git cd anti-spoofing
- Build and run the Docker container:
docker-compose up --build
The API can be accessed at http://localhost:5000
. You can use tools like Postman to interact with the API.
Example Request
To make a prediction, you can send a POST
request to the /predict
endpoint with an image file.
- CI/CD using Github Action