-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathqa_model.py
528 lines (355 loc) · 19.1 KB
/
qa_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import logging
import numpy as np
import sys
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from general_utils import Progbar
from data_utils import *
from collections import defaultdict as ddict
from attention_wrapper import _maybe_mask_score
from attention_wrapper import *
from evaluate import exact_match_score, f1_score
from tensorflow.python import debug as tf_debug
from tensorflow.python.ops import array_ops
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
logging.basicConfig(stream = sys.stdout, level=logging.INFO)
# -- A helper function to reverse a tensor along seq_dim
def _reverse(input_, seq_lengths, seq_dim, batch_dim):
if seq_lengths is not None:
return array_ops.reverse_sequence(
input=input_, seq_lengths=seq_lengths,
seq_dim=seq_dim, batch_dim=batch_dim)
else:
return array_ops.reverse(input_, axis=[seq_dim])
class Encoder(object):
def __init__(self, hidden_size, initializer = lambda : None):#tf.contrib.layers.xavier_initializer):
self.hidden_size = hidden_size
self.init_weights = initializer
def encode(self, inputs, masks, encoder_state_input = None):
"""
:param inputs: vector representations of question and passage (a tuple)
:param masks: masking sequences for both question and passage (a tuple)
:param encoder_state_input: (Optional) pass this as initial hidden state
to tf.nn.dynamic_rnn to build conditional representations
:return: an encoded representation of the question and passage.
"""
question, passage = inputs
masks_question, masks_passage = masks
# read passage conditioned upon the question
with tf.variable_scope("encoded_question"):
lstm_cell_question = tf.contrib.rnn.BasicLSTMCell(self.hidden_size, state_is_tuple = True)
encoded_question, (q_rep, _) = tf.nn.dynamic_rnn(lstm_cell_question, question, masks_question, dtype=tf.float32) # (-1, Q, H)
with tf.variable_scope("encoded_passage"):
lstm_cell_passage = tf.contrib.rnn.BasicLSTMCell(self.hidden_size, state_is_tuple = True)
encoded_passage, (p_rep, _) = tf.nn.dynamic_rnn(lstm_cell_passage, passage, masks_passage, dtype=tf.float32) # (-1, P, H)
# outputs beyond sequence lengths are masked with 0s
return encoded_question, encoded_passage , q_rep, p_rep
class BaselineDecoder(object):
def __init__(self):
return
def decode(self, encoded_passage , q_rep, mask, labels):
# (batch_size, 1, D), (batch_size, Q, D)
input_size = q_rep.get_shape()[-1]
q_rep1 = tf.layers.dense(q_rep, input_size, name="W1")
q_rep2 = tf.layers.dense(q_rep, input_size, name="W2")
q_rep1 = tf.expand_dims(q_rep1, 1)
logit_1 = tf.reduce_sum(q_rep1*encoded_passage, [2])
q_rep2 = tf.expand_dims(q_rep2, 1)
logit_2 = tf.reduce_sum(q_rep2*encoded_passage, [2])
func = lambda score: _maybe_mask_score(score, mask, float("-inf"))
return [func(logit_1),func(logit_2)]
class Decoder(object):
def __init__(self, hidden_size, initializer= lambda : None):
self.hidden_size = hidden_size
self.init_weights = initializer
def run_lstm(self, encoded_rep, q_rep, masks):
encoded_question, encoded_passage = encoded_rep
masks_question, masks_passage = masks
q_rep = tf.expand_dims(q_rep, 1) # (batch_size, 1, D)
encoded_passage_shape = tf.shape(encoded_passage)[1]
q_rep = tf.tile(q_rep, [1, encoded_passage_shape, 1])
mixed_question_passage_rep = tf.concat([encoded_passage, q_rep], axis=-1)
with tf.variable_scope("lstm_"):
cell = tf.contrib.rnn.BasicLSTMCell(self.hidden_size, state_is_tuple = True)
reverse_mixed_question_passage_rep = _reverse(mixed_question_passage_rep, masks_passage, 1, 0)
output_attender_fw, _ = tf.nn.dynamic_rnn(cell, mixed_question_passage_rep, dtype=tf.float32, scope ="rnn")
output_attender_bw, _ = tf.nn.dynamic_rnn(cell, reverse_mixed_question_passage_rep, dtype=tf.float32, scope = "rnn")
output_attender_bw = _reverse(output_attender_bw, masks_passage, 1, 0)
output_attender = tf.concat([output_attender_fw, output_attender_bw], axis = -1) # (-1, P, 2*H)
return output_attender
def run_match_lstm(self, encoded_rep, masks):
encoded_question, encoded_passage = encoded_rep
masks_question, masks_passage = masks
match_lstm_cell_attention_fn = lambda curr_input, state : tf.concat([curr_input, state], axis = -1)
query_depth = encoded_question.get_shape()[-1]
# output attention is false because we want to output the cell output and not the attention values
with tf.variable_scope("match_lstm_attender"):
attention_mechanism_match_lstm = BahdanauAttention(query_depth, encoded_question, memory_sequence_length = masks_question)
cell = tf.contrib.rnn.BasicLSTMCell(self.hidden_size, state_is_tuple = True)
lstm_attender = AttentionWrapper(cell, attention_mechanism_match_lstm, output_attention = False, attention_input_fn = match_lstm_cell_attention_fn)
# we don't mask the passage because masking the memories will be handled by the pointerNet
reverse_encoded_passage = _reverse(encoded_passage, masks_passage, 1, 0)
output_attender_fw, _ = tf.nn.dynamic_rnn(lstm_attender, encoded_passage, dtype=tf.float32, scope ="rnn")
output_attender_bw, _ = tf.nn.dynamic_rnn(lstm_attender, reverse_encoded_passage, dtype=tf.float32, scope = "rnn")
output_attender_bw = _reverse(output_attender_bw, masks_passage, 1, 0)
output_attender = tf.concat([output_attender_fw, output_attender_bw], axis = -1) # (-1, P, 2*H)
return output_attender
def run_answer_ptr(self, output_attender, masks, labels):
batch_size = tf.shape(output_attender)[0]
masks_question, masks_passage = masks
labels = tf.unstack(labels, axis=1)
#labels = tf.ones([batch_size, 2, 1])
answer_ptr_cell_input_fn = lambda curr_input, context : context # independent of question
query_depth_answer_ptr = output_attender.get_shape()[-1]
with tf.variable_scope("answer_ptr_attender"):
attention_mechanism_answer_ptr = BahdanauAttention(query_depth_answer_ptr , output_attender, memory_sequence_length = masks_passage)
# output attention is true because we want to output the attention values
cell_answer_ptr = tf.contrib.rnn.BasicLSTMCell(self.hidden_size, state_is_tuple = True )
answer_ptr_attender = AttentionWrapper(cell_answer_ptr, attention_mechanism_answer_ptr, cell_input_fn = answer_ptr_cell_input_fn)
logits, _ = tf.nn.static_rnn(answer_ptr_attender, labels, dtype = tf.float32)
return logits
def decode_lstm(self, encoded_rep, q_rep, masks, labels):
"""
Ablation study on match-LSTM (replace match-LSTM with a simple LSTM)
"""
output_lstm = self.run_lstm(encoded_rep, q_rep, masks)
logits = self.run_answer_ptr(output_lstm, masks, labels)
return logits
def decode(self, encoded_rep, q_rep, masks, labels):
"""
takes in encoded_rep
and output a probability estimation over
all paragraph tokens on which token should be
the start of the answer span, and which should be
the end of the answer span.
:param encoded_rep:
:param masks
:param labels
:return: logits: for each word in passage the probability that it is the start word and end word.
"""
output_attender = self.run_match_lstm(encoded_rep, masks)
logits = self.run_answer_ptr(output_attender, masks, labels)
return logits
class QASystem(object):
def __init__(self, encoder, decoder, pretrained_embeddings, config):
"""
Initializes your System
:param encoder: an encoder that you constructed in train.py
:param decoder: a decoder that you constructed in train.py
:param args: pass in more arguments as needed
"""
# ==== set up logging ======
logger = logging.getLogger("QASystemLogger")
self.logger = logger
# ==== set up placeholder tokens ========
self.embeddings = pretrained_embeddings
self.encoder = encoder
self.decoder = decoder
self.config = config
self.setup_placeholders()
# ==== assemble pieces ====
with tf.variable_scope("qa"):
self.setup_word_embeddings()
self.setup_system()
self.setup_loss()
self.setup_train_op()
self.saver = tf.train.Saver()
def setup_train_op(self):
"""
Add train_op to self
"""
with tf.variable_scope("train_step"):
adam_optimizer = tf.train.AdamOptimizer()
grads, vars = zip(*adam_optimizer.compute_gradients(self.loss))
clip_val = self.config.max_gradient_norm
# if -1 then do not perform gradient clipping
if clip_val != -1:
clipped_grads, _ = tf.clip_by_global_norm(grads, self.config.max_gradient_norm)
self.global_grad = tf.global_norm(clipped_grads)
self.gradients = zip(clipped_grads, vars)
else:
self.global_grad = tf.global_norm(grads)
self.gradients = zip(grads, vars)
self.train_op = adam_optimizer.apply_gradients(self.gradients)
self.init = tf.global_variables_initializer()
def get_feed_dict(self, questions, contexts, answers, dropout_val):
"""
-arg questions: A list of list of ids representing the question sentence
-arg contexts: A list of list of ids representing the context paragraph
-arg dropout_val: A float representing the keep probability for dropout
:return: dict {placeholders: value}
"""
padded_questions, question_lengths = pad_sequences(questions, 0)
padded_contexts, passage_lengths = pad_sequences(contexts, 0)
feed = {
self.question_ids : padded_questions,
self.passage_ids : padded_contexts,
self.question_lengths : question_lengths,
self.passage_lengths : passage_lengths,
self.labels : answers,
self.dropout : dropout_val
}
return feed
def setup_word_embeddings(self):
'''
Create an embedding matrix (initialised with pretrained glove vectors and updated only if self.config.train_embeddings is true)
lookup into this matrix and apply dropout (which is 1 at test time and self.config.dropout at train time)
'''
with tf.variable_scope("vocab_embeddings"):
_word_embeddings = tf.Variable(self.embeddings, name="_word_embeddings", dtype=tf.float32, trainable= self.config.train_embeddings)
question_emb = tf.nn.embedding_lookup(_word_embeddings, self.question_ids, name = "question") # (-1, Q, D)
passage_emb = tf.nn.embedding_lookup(_word_embeddings, self.passage_ids, name = "passage") # (-1, P, D)
# Apply dropout
self.question = tf.nn.dropout(question_emb, self.dropout)
self.passage = tf.nn.dropout(passage_emb, self.dropout)
def setup_placeholders(self):
self.question_ids = tf.placeholder(tf.int32, shape = [None, None], name = "question_ids")
self.passage_ids = tf.placeholder(tf.int32, shape = [None, None], name = "passage_ids")
self.question_lengths = tf.placeholder(tf.int32, shape=[None], name="question_lengths")
self.passage_lengths = tf.placeholder(tf.int32, shape = [None], name = "passage_lengths")
self.labels = tf.placeholder(tf.int32, shape = [None, 2], name = "gold_labels")
self.dropout = tf.placeholder(tf.float32, shape=[], name = "dropout")
def setup_system(self):
"""
Apply the encoder to the question and passage embeddings. Follow that up by Match-LSTM and Answer-Ptr
"""
encoder = self.encoder
decoder = self.decoder
encoded_question, encoded_passage, q_rep, p_rep = encoder.encode([self.question, self.passage], [self.question_lengths, self.passage_lengths],
encoder_state_input = None)
if self.config.use_match:
self.logger.info("\n========Using Match LSTM=========\n")
logits= decoder.decode([encoded_question, encoded_passage], q_rep, [self.question_lengths, self.passage_lengths], self.labels)
else:
self.logger.info("\n========Using Vanilla LSTM=========\n")
logits = decoder.decode_lstm([encoded_question, encoded_passage], q_rep, [self.question_lengths, self.passage_lengths], self.labels)
self.logits = logits
def setup_loss(self):
"""
self.logits are the 2 sets of logit (num_classes) values for each example, masked with float(-inf) beyond the true sequence length
:return: Loss for the current batch of examples
"""
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits[0], labels=self.labels[:,0])
losses += tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits[1], labels=self.labels[:,1])
self.loss = tf.reduce_mean(losses)
def initialize_model(self, session, train_dir):
"""
param: session managed from train.py
param: train_dir : the directory in which models are saved
"""
ckpt = tf.train.get_checkpoint_state(train_dir)
v2_path = ckpt.model_checkpoint_path + ".index" if ckpt else ""
if ckpt and (tf.gfile.Exists(ckpt.model_checkpoint_path) or tf.gfile.Exists(v2_path)):
self.logger.info("Reading model parameters from %s" % ckpt.model_checkpoint_path)
self.saver.restore(session, ckpt.model_checkpoint_path)
else:
self.logger.info("Created model with fresh parameters.")
session.run(self.init)
self.logger.info('Num params: %d' % sum(v.get_shape().num_elements() for v in tf.trainable_variables()))
def test(self, session, valid):
"""
valid: a list containing q, c and a.
:return: loss on the valid dataset and the logit values
"""
q, c, a = valid
# at test time we do not perform dropout.
input_feed = self.get_feed_dict(q, c, a, 1.0)
output_feed = [self.logits]
outputs = session.run(output_feed, input_feed)
return outputs[0][0], outputs[0][1]
def answer(self, session, dataset):
'''
Get the answers for dataset. Independent of how data iteration is implemented
'''
yp, yp2 = self.test(session, dataset)
# -- Boundary Model with a max span restriction of 15
def func(y1, y2):
max_ans = -999999
a_s, a_e= 0,0
num_classes = len(y1)
for i in xrange(num_classes):
for j in xrange(15):
if i+j >= num_classes:
break
curr_a_s = y1[i];
curr_a_e = y2[i+j]
if (curr_a_e+curr_a_s) > max_ans:
max_ans = curr_a_e + curr_a_s
a_s = i
a_e = i+j
return (a_s, a_e)
a_s, a_e = [], []
for i in xrange(yp.shape[0]):
_a_s, _a_e = func(yp[i], yp2[i])
a_s.append(_a_s)
a_e.append(_a_e)
return (np.array(a_s), np.array(a_e))
def evaluate_model(self, session, dataset):
"""
:param session: session should always be centrally managed in train.py
:param dataset: a representation of our data, in some implementations, you can
pass in multiple components (arguments) of one dataset to this function
:return: exact match scores
"""
q, c, a = zip(*[[_q, _c, _a] for (_q, _c, _a) in dataset])
sample = len(dataset)
a_s, a_o = self.answer(session, [q, c, a])
answers = np.hstack([a_s.reshape([sample, -1]), a_o.reshape([sample,-1])])
gold_answers = np.array([a for (_,_, a) in dataset])
em_score = 0
em_1 = 0
em_2 = 0
for i in xrange(sample):
gold_s, gold_e = gold_answers[i]
s, e = answers[i]
if (s==gold_s): em_1 += 1.0
if (e==gold_e): em_2 += 1.0
if (s == gold_s and e == gold_e):
em_score += 1.0
em_1 /= float(len(answers))
em_2 /= float(len(answers))
self.logger.info("\nExact match on 1st token: %5.4f | Exact match on 2nd token: %5.4f\n" %(em_1, em_2))
em_score /= float(len(answers))
return em_score
def run_epoch(self, session, train):
"""
Perform one complete pass over the training data and evaluate on dev
"""
nbatches = (len(train) + self.config.batch_size - 1) / self.config.batch_size
prog = Progbar(target=nbatches)
for i, (q_batch, c_batch, a_batch) in enumerate(minibatches(train, self.config.batch_size)):
# at training time, dropout needs to be on.
input_feed = self.get_feed_dict(q_batch, c_batch, a_batch, self.config.dropout_val)
_, train_loss = session.run([self.train_op, self.loss], feed_dict=input_feed)
prog.update(i + 1, [("train loss", train_loss)])
def train(self, session, dataset, train_dir):
"""
Implement main training loop
:param session: it should be passed in from train.py
:param dataset: a list containing the training and dev data
:param train_dir: path to the directory where you should save the model checkpoint
:return:
"""
if not tf.gfile.Exists(train_dir):
tf.gfile.MkDir(train_dir)
train, dev = dataset
em = self.evaluate_model(session, dev)
self.logger.info("\n#-----------Initial Exact match on dev set: %5.4f ---------------#\n" %em)
#self.logger.info("#-----------Initial F1 on dev set: %5.4f ---------------#" %f1)
best_em = 0
for epoch in xrange(self.config.num_epochs):
self.logger.info("\n*********************EPOCH: %d*********************\n" %(epoch+1))
self.run_epoch(session, train)
em = self.evaluate_model(session, dev)
self.logger.info("\n#-----------Exact match on dev set: %5.4f #-----------\n" %em)
#self.logger.info("#-----------F1 on dev set: %5.4f #-----------" %f1)
#======== Save model if it is the best so far ========
if (em > best_em):
self.saver.save(session, "%s/best_model.chk" %train_dir)
best_em = em