-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotinc_spect.py
executable file
·165 lines (147 loc) · 5.49 KB
/
plotinc_spect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import sys, os
import dateutils
from dateutils import daterange
from netCDF4 import Dataset
from spharm import Spharmt, getspecindx
from matplotlib.ticker import FormatStrFormatter,FuncFormatter,LogLocator
def getrms(diff,coslats):
meancoslats = coslats.mean()
return np.sqrt((coslats*diff**2).mean()/meancoslats)
def getvarspectrum(dataspec,indxm,indxn,ntrunc):
varspect = np.zeros(ntrunc+1,np.float)
nlm = (ntrunc+1)*(ntrunc+2)/2
for n in range(nlm):
if indxm[n] == 0:
varspect[indxn[n]] += (0.5*dataspec[n]*np.conj(dataspec[n])).real
else:
varspect[indxn[n]] += (dataspec[n]*np.conj(dataspec[n])).real
return varspect
expt1 = sys.argv[1]
expt2 = sys.argv[2]
date1 = sys.argv[3]
date2 = sys.argv[4]
dates = dateutils.daterange(date1,date2,6)
var = 'tmpmidlayer'
#var = 'pressfc'
nlev = 25
alpha = 0.5
spec1 = None; spec2 = None; spec3 = None; spec4 = None
for date in dates:
# get first guess for expt 1 (hybrid gain)
datapath = '/scratch3/BMC/gsienkf/whitaker/%s' % expt1
print datapath
print date
filename = os.path.join(os.path.join(datapath,date),'sfg_%s_fhr06_ensmean.nc4' % date)
nc = Dataset(filename)
if spec1 is None:
lons = nc['lon'][:]
lats = nc['lat'][::-1]
nlats = len(lats); nlons = len(lons)
lons2, lats2 = np.meshgrid(lons, lats)
re = 6.3712e6; ntrunc=nlats-1
spec = Spharmt(nlons,nlats,rsphere=re,gridtype='regular',legfunc='computed')
indxm, indxn = getspecindx(ntrunc)
degree = indxn.astype(np.float)
if var == 'pressfc':
fg1 = nc[var][0,::-1,...]
else:
fg1 = nc[var][0,nlev,::-1,...]
nc.close()
# get first guess for expt 2 (hybrid cov/envar)
datapath = '/scratch3/BMC/gsienkf/whitaker/%s' % expt2
print datapath
print date
filename = os.path.join(os.path.join(datapath,date),'sfg_%s_fhr06_ensmean.nc4' % date)
nc = Dataset(filename)
if var == 'pressfc':
fg2 = nc[var][0,::-1,...]
else:
fg2 = nc[var][0,nlev,::-1,...]
nc.close()
# get 3dvar increment from hybrid gain expt (expt1)
datapath = '/scratch3/BMC/gsienkf/whitaker/%s' % expt1
filename = os.path.join(os.path.join(datapath,date),'sanl_%s_fhr06_control.nc4' % date)
nc = Dataset(filename)
if var == 'pressfc':
varinc = nc[var][0,::-1,...] - fg1
else:
varinc = nc[var][0,nlev,::-1,...] - fg1
nc.close()
# get enkf increment from hybrid gain expt
filename = os.path.join(os.path.join(datapath,date),'sanl_%s_fhr06_ensmean.orig.nc4' % date)
nc = Dataset(filename)
if var == 'pressfc':
enkfinc = nc[var][0,::-1,...] - fg1
else:
enkfinc = nc[var][0,nlev,::-1,...] - fg1
nc.close()
inc = enkfinc + alpha*varinc
print inc.min(), inc.max(), inc.min(), inc.max()
print 'global RMS',expt1,getrms(inc,np.cos(np.radians(lats2)))
incspec = spec.grdtospec(inc)
if spec1 is None:
spec1 = getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
else:
spec1 += getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
# get hybrid cov increment (expt2)
datapath = '/scratch3/BMC/gsienkf/whitaker/%s' % expt2
print datapath
filename = os.path.join(os.path.join(datapath,date),'sanl_%s_fhr06_control.nc4' % date)
nc = Dataset(filename)
if var == 'pressfc':
inc = nc[var][0,::-1,...] - fg2
else:
inc = nc[var][0,nlev,::-1,...] - fg2
nc.close()
print inc.min(), inc.max(), inc.min(), inc.max()
print 'global RMS',expt2,getrms(inc,np.cos(np.radians(lats2)))
incspec = spec.grdtospec(inc)
if spec2 is None:
spec2 = getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
else:
spec2 += getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
# enkf increment expt1
inc = enkfinc
print inc.min(), inc.max(), inc.min(), inc.max()
print 'global RMS EnKF',expt1,getrms(inc,np.cos(np.radians(lats2)))
incspec = spec.grdtospec(inc)
if spec3 is None:
spec3 = getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
else:
spec3 += getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
# 3dvar increment expt2
inc = varinc
print inc.min(), inc.max(), inc.min(), inc.max()
print 'global RMS 3DVar',expt1,getrms(inc,np.cos(np.radians(lats2)))
incspec = spec.grdtospec(inc)
if spec4 is None:
spec4 = getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
else:
spec4 += getvarspectrum(incspec,indxm,indxn,ntrunc)/len(dates)
fout = open('spectrum_test.txt','w')
for n in xrange(ntrunc+1):
fout.write('%s %g %g\n' % (n,spec1[n],spec2[n]))
fout.close()
print 'global RMS spectra',expt1,expt2,np.sqrt(spec1.sum()), np.sqrt(spec2.sum())
plt.semilogy(np.arange(ntrunc+1),spec1,color='b',linewidth=2,\
label='Hybrid Gain Increment')
plt.semilogy(np.arange(ntrunc+1),spec2,color='r',linewidth=2,\
label='Hybrid Cov Increment')
plt.semilogy(np.arange(ntrunc+1),spec3,color='k',linewidth=2,\
label='EnKF Increment')
plt.semilogy(np.arange(ntrunc+1),spec4,'k:',linewidth=2,\
label='3DVar Increment')
plt.legend(loc=0)
#plt.ylim(1.e-6,1.e-2)
#plt.xlim(0,ntrunc-1)
plt.ylim(1.e-5,1.e-2)
plt.xlim(0,180)
plt.xlabel('total wavenumber')
plt.ylabel('increment variance')
plt.title('Increment spectrum %s nlev=%s (%s-%s)' % (var,nlev,date1,date2))
plt.savefig('spectrum_test.png')
plt.show()