-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfxi_tomo_update.py
618 lines (519 loc) · 19.6 KB
/
fxi_tomo_update.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
import numpy as np
def transform(dataset, rotation_center=0, slice_start=0, slice_stop=1,
denoise_flag=0, denoise_level=9, dark_scale=1, circ_mask_ratio=1,
block_list_start=0, block_list_end=0, binning=1):
# Get the current volume as a numpy array.
array = dataset.active_scalars
dark = dataset.dark
white = dataset.white
angles = dataset.tilt_angles
tilt_axis = dataset.tilt_axis
# TomoPy wants the tilt axis to be zero, so ensure that is true
if tilt_axis == 2:
order = [2, 1, 0]
array = np.transpose(array, order)
if dark is not None:
dark = np.transpose(dark, order)
if white is not None:
white = np.transpose(white, order)
if angles is None:
raise Exception('No angles found')
# FIXME: Are these right?
recon_input = {
'img_tomo': array,
'angle': angles,
}
if dark is not None:
recon_input['img_dark_avg'] = dark
if white is not None:
recon_input['img_bkg_avg'] = white
if block_list_end > block_list_start:
block_list = np.arange(block_list_start, block_list_end+1)
else:
block_list = []
kwargs = {
'f': recon_input,
'rot_cen': rotation_center,
'sli': [slice_start, slice_stop],
'denoise_flag': denoise_flag,
'denoise_level': denoise_level,
'dark_scale': dark_scale,
'binning': binning,
'circ_mask_ratio': circ_mask_ratio,
'block_list': block_list
}
# Perform the reconstruction
output = recon2(**kwargs)
# Set the transformed array
child = dataset.create_child_dataset()
child.active_scalars = output
return_values = {}
return_values['reconstruction'] = child
return return_values
def test_rotations(dataset, start=None, stop=None, steps=None, sli=0,
denoise_flag=0, denoise_level=9, dark_scale=1):
# Get the current volume as a numpy array.
array = dataset.active_scalars
dark = dataset.dark
white = dataset.white
angles = dataset.tilt_angles
tilt_axis = dataset.tilt_axis
# TomoPy wants the tilt axis to be zero, so ensure that is true
if tilt_axis == 2:
order = [2, 1, 0]
array = np.transpose(array, order)
if dark is not None:
dark = np.transpose(dark, order)
if white is not None:
white = np.transpose(white, order)
if angles is None:
raise Exception('No angles found')
recon_input = {
'img_tomo': array,
'angle': angles,
}
if dark is not None:
recon_input['img_dark_avg'] = dark
if white is not None:
recon_input['img_bkg_avg'] = white
kwargs = {
'f': recon_input,
'start': start,
'stop': stop,
'steps': steps,
'sli': sli,
'denoise_flag': denoise_flag,
'denoise_level': denoise_level,
'dark_scale': dark_scale,
}
if dark is None or white is None:
kwargs['txm_normed_flag'] = True
# Perform the reconstruction
images, centers = rotcen_test2(**kwargs)
child = dataset.create_child_dataset()
child.active_scalars = images
return_values = {}
return_values['images'] = child
return_values['centers'] = centers.astype(float).tolist()
return return_values
def find_nearest(data, value):
data = np.array(data)
return np.abs(data - value).argmin()
def recon(f, rot_cen, sli=[], binning=None, zero_flag=0, block_list=[],
bkg_level=0, txm_normed_flag=0, read_full_memory=0, denoise_flag=0,
denoise_level=9, dark_scale=1, circ_mask_ratio=1):
'''
reconstruct 3D tomography
Inputs:
--------
f: dict
input dictionary of scan
rot_cen: float
rotation center
sli: list
a range of slice to recontruct, e.g. [100:300]
bingning: int
binning the reconstruted 3D tomographic image
zero_flag: bool
if 1: set negative pixel value to 0
if 0: keep negative pixel value
block_list: list
a list of index for the projections that will not be considered in
reconstruction
'''
import tomopy
tmp = np.array(f['img_tomo'][0])
s = [1, tmp.shape[0], tmp.shape[1]]
if len(sli) == 0:
sli = [0, s[1]]
elif len(sli) == 1 and sli[0] >= 0 and sli[0] <= s[1]:
sli = [sli[0], sli[0]+1]
elif len(sli) == 2 and sli[0] >= 0 and sli[1] <= s[1]:
pass
else:
print('non valid slice id, will take reconstruction for the whole',
'object')
'''
if len(col) == 0:
col = [0, s[2]]
elif len(col) == 1 and col[0] >=0 and col[0] <= s[2]:
col = [col[0], col[0]+1]
elif len(col) == 2 and col[0] >=0 and col[1] <= s[2]:
col_info = '_col_{}_{}'.format(col[0], col[1])
else:
col = [0, s[2]]
print('invalid col id, will take reconstruction for the whole object')
'''
# rot_cen = rot_cen - col[0]
theta = np.array(f['angle']) / 180.0 * np.pi
pos = find_nearest(theta, theta[0]+np.pi)
block_list = list(block_list) + list(np.arange(pos+1, len(theta)))
allow_list = list(set(np.arange(len(theta))) - set(block_list))
theta = theta[allow_list]
tmp = np.squeeze(np.array(f['img_tomo'][0]))
s = tmp.shape
sli_step = 40
sli_total = np.arange(sli[0], sli[1])
binning = binning if binning else 1
n_steps = int(len(sli_total) / sli_step)
rot_cen = rot_cen * 1.0 / binning
if read_full_memory:
sli_step = sli[1] - sli[0]
n_steps = 1
if denoise_flag:
add_slice = min(sli_step // 2, 20)
wiener_param = {}
psf = 2
wiener_param['psf'] = np.ones([psf, psf])/(psf**2)
wiener_param['reg'] = None
wiener_param['balance'] = 0.3
wiener_param['is_real'] = True
wiener_param['clip'] = True
else:
add_slice = 0
wiener_param = []
try:
rec = np.zeros([s[0] // binning, s[1] // binning, s[1] // binning],
dtype=np.float32)
except Exception:
print('Cannot allocate memory')
# following slices
for i in range(n_steps):
if i == n_steps-1:
sli_sub = [i*sli_step+sli_total[0], len(sli_total)+sli[0]]
current_sli = sli_sub
else:
sli_sub = [i*sli_step+sli_total[0], (i+1)*sli_step+sli_total[0]]
current_sli = [sli_sub[0]-add_slice, sli_sub[1]+add_slice]
print(f'recon {i+1}/{n_steps}: sli = [{sli_sub[0]},',
f'{sli_sub[1]}] ... ')
prj_norm = proj_normalize(f, current_sli, txm_normed_flag, binning,
allow_list, bkg_level, denoise_level,
dark_scale)
prj_norm = wiener_denoise(prj_norm, wiener_param, denoise_flag)
if i != 0 and i != n_steps - 1:
start = add_slice // binning
stop = sli_step // binning + start
prj_norm = prj_norm[:, start:stop]
rec_sub = tomopy.recon(prj_norm, theta, center=rot_cen,
algorithm='gridrec')
start = i * sli_step // binning
rec[start: start + rec_sub.shape[0]] = rec_sub
if zero_flag:
rec[rec < 0] = 0
return rec
def recon2(f, rot_cen, sli=[], binning=None, zero_flag=0, block_list=[],
bkg_level=0, txm_normed_flag=0, read_full_memory=0, denoise_flag=0,
denoise_level=9, dark_scale=1, circ_mask_ratio=1, atten=[], norm_empty_sli=[]):
import tomopy
tmp = np.array(f["img_tomo"][0])
s = [1, tmp.shape[0], tmp.shape[1]]
slice_info = ""
bin_info = ""
sli_step = 40
if len(sli) == 0:
sli = [0, s[1]]
sli[1] = int((sli[1] - sli[0]) // sli_step * sli_step)
elif len(sli) == 1 and sli[0] >= 0 and sli[0] <= s[1]:
sli = [sli[0], sli[0] + 1]
slice_info = "_slice_{}".format(sli[0])
elif len(sli) == 2 and sli[0] >= 0 and sli[1] <= s[1]:
sli[1] = int((sli[1] - sli[0]) // sli_step * sli_step) + sli[0]
slice_info = "_slice_{}_{}".format(sli[0], sli[1])
else:
print("non valid slice id, will take reconstruction for the whole object")
# need to check if 'scan_id' and 'X_eng' are available
#scan_id = np.array(f["scan_id"])
theta = np.array(f["angle"]) / 180.0 * np.pi
#eng = np.array(f["X_eng"])
if theta[-1] > theta[1]:
pos = find_nearest(theta, theta[0] + np.pi)
else:
pos = find_nearest(theta, theta[0] - np.pi)
block_list = list(block_list) + list(np.arange(pos + 1, len(theta)))
allow_list = list(set(np.arange(len(theta))) - set(block_list))
theta = theta[allow_list]
tmp = np.squeeze(np.array(f["img_tomo"][0]))
s = tmp.shape
sli_total = np.arange(sli[0], sli[1])
binning = binning if binning else 1
bin_info = f"_bin_{binning}"
sli_step = 40
n_steps = int(len(sli_total) / sli_step)
rot_cen = (rot_cen * 1.0 - col[0]) / binning
if n_steps == 0:
read_full_memory = 1
if read_full_memory:
sli_step = sli[1] - sli[0]
n_steps = 1
# optional
if denoise_flag:
add_slice = min(sli_step // 2, 20)
else:
add_slice = 0
try:
if np.mod(s[1], 2) == 1:
ss = s[1] - 1
else:
ss = s[1]
rec = np.zeros(
[sli_step * n_steps // binning, ss // binning, ss // binning],
dtype=np.float32,
)
except:
print("Cannot allocate memory")
for i in range(n_steps):
time_s = time.time()
if i == 0:
sli_sub = [sli_total[0], sli_total[0] + sli_step]
current_sli = sli_sub
elif i == n_steps - 1:
sli_sub = [i * sli_step + sli_total[0], len(sli_total) + sli[0]]
current_sli = sli_sub
else:
sli_sub = [i * sli_step + sli_total[0], (i + 1) * sli_step + sli_total[0]]
current_sli = [sli_sub[0] - add_slice, sli_sub[1] + add_slice]
print(f"recon {i+1}/{n_steps}: sli = [{sli_sub[0]}, {sli_sub[1]}] ... ")
prj_norm = proj_normalize(
fn,
current_sli,
txm_normed_flag,
binning,
allow_list,
bkg_level,
fw_level=denoise_level,
denoise_flag=denoise_flag,
dark_scale=dark_scale,
)
prj_norm = prj_norm[:, :, col[0]//binning:col[1]//binning]
if i != 0 and i != n_steps - 1:
prj_norm = prj_norm[
:,
add_slice // binning : sli_step // binning + add_slice // binning
]
rec_sub = tomopy.recon(prj_norm, theta, center=rot_cen, algorithm='gridrec', ncore=ncore,filter_name=filter_name)
rec[i * sli_step // binning : i * sli_step // binning + rec_sub.shape[0]] = rec_sub
time_e = time.time()
print(f'takeing {time_e-time_s:3.1f} sec')
bin_info = f"_bin{int(binning)}"
fout = f"recon_scan_{str(scan_id)}{str(slice_info)}{str(col_info)}{str(bin_info)}"
if zero_flag:
rec[rec < 0] = 0
if circ_mask_ratio < 1:
rec = tomopy.circ_mask(rec, axis=0, ratio=circ_mask_ratio)
return rec
def wiener_denoise(prj_norm, wiener_param, denoise_flag):
import skimage.restoration as skr
if not denoise_flag or not len(wiener_param):
return prj_norm
ss = prj_norm.shape
psf = wiener_param['psf']
reg = wiener_param['reg']
balance = wiener_param['balance']
is_real = wiener_param['is_real']
clip = wiener_param['clip']
for j in range(ss[0]):
prj_norm[j] = skr.wiener(prj_norm[j], psf=psf, reg=reg,
balance=balance, is_real=is_real, clip=clip)
return prj_norm
def proj_normalize(f, sli, txm_normed_flag, binning, allow_list=[],
bkg_level=0, denoise_level=9, dark_scale=1):
import tomopy
img_tomo = np.array(f['img_tomo'][:, sli[0]:sli[1], :])
try:
img_bkg = np.array(f['img_bkg_avg'][:, sli[0]:sli[1]])
except Exception:
img_bkg = []
try:
img_dark = np.array(f['img_dark_avg'][:, sli[0]:sli[1]])
except Exception:
img_dark = []
if len(img_dark) == 0 or len(img_bkg) == 0 or txm_normed_flag == 1:
prj = img_tomo
else:
prj = ((img_tomo - img_dark / dark_scale) /
(img_bkg - img_dark / dark_scale))
s = prj.shape
prj = bin_ndarray(prj, (s[0], int(s[1] / binning), int(s[2] / binning)),
'mean')
prj_norm = -np.log(prj)
prj_norm[np.isnan(prj_norm)] = 0
prj_norm[np.isinf(prj_norm)] = 0
prj_norm[prj_norm < 0] = 0
prj_norm = prj_norm[allow_list]
prj_norm = tomopy.prep.stripe.remove_stripe_fw(prj_norm,
level=denoise_level,
wname='db5', sigma=1,
pad=True)
prj_norm -= bkg_level
return prj_norm
def bin_ndarray(ndarray, new_shape=None, operation='mean'):
"""
Bins an ndarray in all axes based on the target shape, by summing or
averaging.
Number of output dimensions must match number of input dimensions and
new axes must divide old ones.
Example
-------
>>> m = np.arange(0,100,1).reshape((10,10))
>>> n = bin_ndarray(m, new_shape=(5,5), operation='sum')
>>> print(n)
[[ 22 30 38 46 54]
[102 110 118 126 134]
[182 190 198 206 214]
[262 270 278 286 294]
[342 350 358 366 374]]
"""
if new_shape is None:
s = np.array(ndarray.shape)
s1 = np.int32(s / 2)
new_shape = tuple(s1)
operation = operation.lower()
if operation not in ['sum', 'mean']:
raise ValueError("Operation not supported.")
if ndarray.ndim != len(new_shape):
raise ValueError("Shape mismatch: {} -> {}".format(ndarray.shape,
new_shape))
compression_pairs = [(d, c // d) for d, c in zip(new_shape,
ndarray.shape)]
flattened = [x for p in compression_pairs for x in p]
ndarray = ndarray.reshape(flattened)
for i in range(len(new_shape)):
op = getattr(ndarray, operation)
ndarray = op(-1*(i+1))
return ndarray
def rotcen_test2(f, start=None, stop=None, steps=None, sli=0, block_list=[],
print_flag=1, bkg_level=0, txm_normed_flag=0, denoise_flag=0,
denoise_level=9, dark_scale=1, atten=None):
#from PIL import Image
from skimage.filters import gaussian as gf
import tomopy
tmp = np.array(f["img_tomo"][0])
s = [1, tmp.shape[0], tmp.shape[1]]
if denoise_flag:
addition_slice = 100
else:
addition_slice = 0
if sli == 0:
sli = int(s[1] / 2)
sli_exp = [
np.max([0, sli - addition_slice // 2]),
np.min([sli + addition_slice // 2 + 1, s[1]]),
]
tomo_angle = np.array(f["angle"])
theta = tomo_angle / 180.0 * np.pi
img_tomo = np.array(f["img_tomo"][:, sli_exp[0] : sli_exp[1], :])
if txm_normed_flag:
prj_norm = img_tomo
else:
img_bkg = np.array(f["img_bkg_avg"][:, sli_exp[0] : sli_exp[1], :])
img_dark = np.array(f["img_dark_avg"][:, sli_exp[0] : sli_exp[1], :]) / dark_scale
prj = (img_tomo - img_dark) / (img_bkg - img_dark)
if not atten is None:
for i in range(len(tomo_angle)):
att = fint(tomo_angle[i])
prj[i] = prj[i] / att
prj_norm = -np.log(prj)
if denoise_flag:
prj_norm = gf(prj_norm, [0, 1, 1])
prj_norm[np.isnan(prj_norm)] = 0
prj_norm[np.isinf(prj_norm)] = 0
prj_norm[prj_norm < 0] = 0
prj_norm -= bkg_level
prj_norm = tomopy.prep.stripe.remove_stripe_fw(
prj_norm, level=denoise_level, wname="db5", sigma=1, pad=True
)
s = prj_norm.shape
if len(s) == 2:
prj_norm = prj_norm.reshape(s[0], 1, s[1])
s = prj_norm.shape
if theta[-1] > theta[1]:
pos = find_nearest(theta, theta[0] + np.pi)
else:
pos = find_nearest(theta, theta[0] - np.pi)
block_list = list(block_list) + list(np.arange(pos + 1, len(theta)))
if len(block_list):
allow_list = list(set(np.arange(len(prj_norm))) - set(block_list))
prj_norm = prj_norm[allow_list]
theta = theta[allow_list]
if start == None or stop == None or steps == None:
start = int(s[2] / 2 - 50)
stop = int(s[2] / 2 + 50)
steps = 26
cen = np.linspace(start, stop, steps)
img = np.zeros([len(cen), s[2], s[2]])
for i in range(len(cen)):
if print_flag:
print('{}: rotcen {}'.format(i+1, cen[i]))
img[i] = tomopy.recon(prj_norm[:, addition_slice:addition_slice + 1],
theta, center=cen[i], algorithm='gridrec')
img = tomopy.circ_mask(img, axis=0, ratio=0.8)
return img, cen
def rotcen_test(f, start=None, stop=None, steps=None, sli=0, block_list=[],
print_flag=1, bkg_level=0, txm_normed_flag=0, denoise_flag=0,
denoise_level=9, dark_scale=1):
import tomopy
tmp = np.array(f['img_tomo'][0])
s = [1, tmp.shape[0], tmp.shape[1]]
if denoise_flag:
import skimage.restoration as skr
addition_slice = 100
psf = 2
psf = np.ones([psf, psf])/(psf**2)
reg = None
balance = 0.3
is_real = True
clip = True
else:
addition_slice = 0
if sli == 0:
sli = int(s[1] / 2)
sli_exp = [np.max([0, sli - addition_slice // 2]),
np.min([sli + addition_slice // 2 + 1, s[1]])]
theta = np.array(f['angle']) / 180.0 * np.pi
img_tomo = np.array(f['img_tomo'][:, sli_exp[0]:sli_exp[1], :])
if txm_normed_flag:
prj = img_tomo
else:
img_bkg = np.array(f['img_bkg_avg'][:, sli_exp[0]:sli_exp[1], :])
img_dark = np.array(f['img_dark_avg'][:, sli_exp[0]:sli_exp[1], :])
prj = ((img_tomo - img_dark / dark_scale) /
(img_bkg - img_dark / dark_scale))
prj_norm = -np.log(prj)
prj_norm[np.isnan(prj_norm)] = 0
prj_norm[np.isinf(prj_norm)] = 0
prj_norm[prj_norm < 0] = 0
prj_norm -= bkg_level
prj_norm = tomopy.prep.stripe.remove_stripe_fw(prj_norm,
level=denoise_level,
wname='db5', sigma=1,
pad=True)
if denoise_flag: # denoise using wiener filter
ss = prj_norm.shape
for i in range(ss[0]):
prj_norm[i] = skr.wiener(prj_norm[i], psf=psf, reg=reg,
balance=balance, is_real=is_real,
clip=clip)
s = prj_norm.shape
if len(s) == 2:
prj_norm = prj_norm.reshape(s[0], 1, s[1])
s = prj_norm.shape
pos = find_nearest(theta, theta[0]+np.pi)
block_list = list(block_list) + list(np.arange(pos+1, len(theta)))
if len(block_list):
allow_list = list(set(np.arange(len(prj_norm))) - set(block_list))
prj_norm = prj_norm[allow_list]
theta = theta[allow_list]
if start is None or stop is None or steps is None:
start = int(s[2]/2-50)
stop = int(s[2]/2+50)
steps = 26
cen = np.linspace(start, stop, steps)
img = np.zeros([len(cen), s[2], s[2]])
for i in range(len(cen)):
if print_flag:
print('{}: rotcen {}'.format(i+1, cen[i]))
img[i] = tomopy.recon(prj_norm[:, addition_slice:addition_slice + 1],
theta, center=cen[i], algorithm='gridrec')
img = tomopy.circ_mask(img, axis=0, ratio=0.8)
return img, cen