-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcalculate_NRpars.m
431 lines (380 loc) · 17.8 KB
/
calculate_NRpars.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
function [NRpars] = calculate_NRpars(nr_dataset, base_dir, parallel_mode, feature_function)
% CALCULATE_NRPARS
% Support tool to calculate a NR feature on all videos or images in a dataset.
% SYNTAX
% [NRpars] = calculate_NRpars(nr_dataset, ...
% base_dir, parallel_mode, feature_function);
% SEMANTICS
% This function provides all support tools needed to calculate
% no-reference (NR) features and NR parameters.
% - NR feature provides multiple values for each image or video.
% - NR parameter provides one value for the entire video or image.
% Other functions will combine NR features and/or NR parameters into NR
% metrics, to provide the user with an overall quality estimation.
%
% Input Parameters:
% nr_dataset = Data struction. Each describes an entire dataset (name, file location, ...)
% base_dir = Path to directory where NR features and NR parameters are stored.
%
% parallel_model =
% 'none' Linear calculation. Parallel processing toolbox avoided.
% 'stimuli' Parallel processing on the stimuli level.
% 'tslice' Divide each stimuli into segments for parallel processing
% Note: tslice mode automatically disabled for images
% (presented as 1 fps sequences), due to inefficiencies.
% 'all' Do parallel processing on both the stimuli and tslice level.
%
% (Note: 'all' and 'stimuli' mode cannot save progress
% calculating NRpars. Only features can be saved against computer crash.)
%
% feature_function = Function call to compute the feature.
% This no-reference feature function (NRFF) must adhere to the
% interface specified below.
%
% -------------------------------------------------------------------------
% FEATURE_FUNCTION
% Input parameter 'feature_function' must have the following interface
% [data] = feature_function(mode, varargin);
% 'mode' is a char array specifying the action to be performed
% 'data' is a cell array with 1 or more return values.
% Each feature function must implement the following calls:
%
% STANDARD SYNTAX
% [feature_group] = feature_function('group')
% [feature_names] = feature_function('feature_names')
% [parameter_names] = feature_function('parameter_names')
% [bool] = feature_function('luma_only')
% [read_mode] = feature_function('read_mode')
% [parallelization] = feature_function('parallelization')
% [feature_data] = feature_function('pixels', fps, y)
% [feature1_data] = feature_function('pixels', fps, y, cb, cr)
% [par_data] = feature_function('pars', feature_data, fps, image_size);
%
% STANDARD SEMANTICS
% 'feature_group' mode returns the feature names
% Output
% feature_group = char array (short) uniquely identifying this group
% of features and parameters.
%
% 'feature_names' mode returns the feature names
% Output
% feature_names = cell array with feature names
%
% 'parameter_names' mode returns the parameter names
% Output
% parameter_names = cell array with parameter names
%
% 'luma_only' mode returns color space option
% Output
% bool = true for luminance only;
% bool = false if 'pixels' mode tales y, cb, and cr.
%
% 'read_mode' = Type of time-slice (tslice) that 'pixels' call takes as input
% and returns one of the following types:
% 'si' 1 frame, for spatial information (SI) features
% 'ti' Overlapping series 2 frames (overlapping by 1F) to
% calculate temporal information. If interlaced, de-interlace
% and group pairs of fields of the same type.
% 'all' The entire stimuli
%
% 'parallelization' = ability for nrff to be run with parallel options
%
% false will not work with parallel options
% true will work with parallel options
%
% 'pixels' mode calculates these features on one tslice
% Input:
% fps = frames per second; NaN for images
% y = image or 1 frame of video, luma only, as a 2D array;
% more generally, a tslice of video. Vertical & horizontal size
% may be smaller than the viewing monitor
% cb, cr = Cb and Cr planes associated with luma plane y
% Output:
% feature_data = Cell array, one cell for each feature name.
% Each cell must contain either a single value, vector, or
% 2-dimensional matrix. These return variables must be returned
% in same order as the feature names.
%
% 'pars' mode
% Input:
% fps = frames per second; NaN for images
% image_size = [rows,cols] = Size of image as displayed on the
% monitor during subjective testing, including black
% border.
% feature_data = Cell array, one cell for each feature name
% Each cell contain data associated with one feature, all frames.
% Size is (t), (t, x) or (t, x, y) where t is tslice number
% (frame number, for 1F features). Otherwise as returned by
% 'pixels' function call.
% Output:
% [par_data] = array, containing the value for each NR parameter
%
% -------------------------------------------------------------------------
% FEATURE_FUNCTION for NR Metrics
% The following variant feature_function is used to combine already
% calculated data from several other feature_functions into a single NR
% metric.
% STANDARD SYNTAX
% [feature_group] = feature_function('group')
% [parameter_names] = feature_function('parameter_names')
% [read_mode] = feature_function('read_mode')
% [par_data] = feature_function('compose', nr_dataset, base_dir);
% SEMANTICS
% Where NRFF takes as input images or videos and outputs NR features and
% NR parameters, this NR metric takes as input NR parameters and outputs
% NR metrics.
%
% 'feature_group' mode returns the feature names
% Output
% feature_group = char array (short) uniquely identifying this group
% of features and parameters.
%
% 'parameter_names' mode returns the parameter names
% Output
% parameter_names = cell array with parameter names
%
% 'read_mode' = 'metric'
%` Function calculate_NRpars.m uses this value ('metric') to select
% the alternate execution path.
%
% 'compose' mode calculates the NR metric.
% Output:
% [par_data] = array, containing the value for each NR parameter or
% NR metric
warning('off','MATLAB:MKDIR:DirectoryExists');
% if given multiple datasets, process them one after another
if length(nr_dataset) > 1
for cnt=1:length(nr_dataset)
NRpars(cnt) = calculate_NRpars(nr_dataset(cnt), base_dir, parallel_mode, feature_function);
end
return;
end
% Check whether this is an NR metric instead of an NR parameter.
% (The difference is that NR parameters calculate values from media
% files, while NR metrics combine the results from other NR parameters.)
% If this is an NR metric, call its calculate function ('compose' mode) and return.
tslice_mode = feature_function('read_mode');
if strcmp(tslice_mode,'metric')
% this is a metric instead of an NR parameter. Calculate as follows
% and return
NRpars = feature_function('compose', nr_dataset, base_dir);
return;
end
% calculate directory paths, NRpars file name
if base_dir(length(base_dir)) ~= '\'
base_dir = fullfile(base_dir,'\');
end
subdir = fullfile(base_dir, join(['group_', feature_function('group')]),'\');
parfile = fullfile(subdir,join(['NRpars_', feature_function('group'),'_', nr_dataset.dataset_name, '.mat']));
if ~exist(subdir)
mkdir(subdir);
end
if ~exist(parfile,'file')
% File did not exist. Initialize a new structure for parameters and
% save to parfile.
NRpars = new_NRpars(nr_dataset, parfile, feature_function);
else
try
% Load previously calculated NR parameters with this name
load(parfile, 'NRpars');
% and make sure contents and order match the input variables
load_success = true;
for cnt=1:length(nr_dataset.media)
if ~strcmp(NRpars.media_name{cnt}, nr_dataset.media(cnt).name)
load_success = false;
break;
end
end
% check if NRpars has the expected number of parameters
if length(NRpars.par_name) ~= length(feature_function('parameter_names'))
load_success = false;
end
% check if NRpars has the expected number of media
if length(NRpars.media_name) ~= length([nr_dataset.media(:)])
load_success = false;
end
% If previous parameters don't match expectations, erase the
% NRpars file and recalculate.
if ~load_success
warning('NRpars inconsistency detected. Discarding NRpars and re-calculating NRpars. Features retained');
update_NRpars(base_dir, feature_function, 'update_pars');
calculate_NRpars(nr_dataset, base_dir, parallel_mode, feature_function);
return;
end
catch
% File existed but load failed. Initialize structure for
% parameters and overwrite the old file.
NRpars = new_NRpars(nr_dataset, parfile, feature_function);
end
end
% Check for parallel mode compatibility
try
parallelization = feature_function('parallelization');
catch
% If the 'parallelization' option is missing from
% @feature_function, it will throw an error. We will assume that
% parallel processing is possible, because this is usually the
% case.
parallelization = true;
end
if ~parallelization && ~strcmp(parallel_mode, 'none')
parallel_mode = 'none';
fprintf("Feature Function does not support parallelization\nTurning off parallel processing\n");
end
% interpret parallel mode as two variables
if strcmpi(parallel_mode,'none')
parallel_stimuli = false;
parallel_tslices = false;
elseif strcmpi(parallel_mode,'stimuli')
parallel_stimuli = true;
parallel_tslices = false;
elseif strcmpi(parallel_mode,'tslice')
parallel_stimuli = false;
parallel_tslices = true;
elseif strcmpi(parallel_mode,'all')
parallel_stimuli = true;
parallel_tslices = true;
else
tmp = sprintf('Error ''calculate_NRpars'':\n');
tmp = [tmp sprintf('- parallel processing mode %s not recognized\n', parallel_mode)];
tmp = [tmp sprintf('- expected ''all'', ''stimuli'', ''tslice'', or ''none''')];
error(tmp);
end
% Preconditions:
% - variable "NRpars" must have the same order and clip structure as nr_dataset.
% - NRpars.computed(clip_num) must be
% true if NR parameters were calculated and saved in NRpars.data
% false otherwise
% turn off warnings that temporary variables will be cleared
warning('off', 'MATLAB:mir_warning_maybe_uninitialized_temporary');
% create list of NR features / NR parameters to be calculated
temp = 1:length(nr_dataset.media);
clip_list = temp(~NRpars.computed);
if isempty(clip_list)
return;
end
if parallel_stimuli == false || parallel_tslices == false
poolobj = [];
else
% start default parallel pool, if needed and doesn't exist
poolobj = gcp('nocreate'); % If no pool, do not create new one.
if isempty(poolobj) && (parallel_stimuli || parallel_tslices)
parpool;
end
end
% keep track of progress
fprintf('Progress %s NR features, dataset %s, directory %s:\n', ...
feature_function('group'), nr_dataset.dataset_name, subdir);
fprintf('%d of %d media files already calculated\n', ...
length(nr_dataset.media) - length(clip_list), length(nr_dataset.media))
fprintf(['\n' repmat('.',1,length(clip_list)) '\n\n']);
if ~parallel_stimuli
% disable parallel tslice mode if dataset is all images & 1 fps clips
if isnan([nr_dataset.media(:).fps]) | max([nr_dataset.media(:).fps]) <= 1
parallel_tslices = false;
end
for cnt = 1:length(clip_list)
clip_num = clip_list(cnt);
% calculate parameter for this clip
[values, success] = calculate_one_media(nr_dataset, clip_num, base_dir, ...
parallel_tslices, feature_function);
if ~success
% Delete parameter file, which may be the source of this error
% This file will be fairly easy to reconstruct, so the cost
% is low.
delete(parfile);
% throw the error again
error('Aborting');
end
if iscell(values)
tmp = sprintf('Error within ''feature_function'' input argument of ''calculate_NRpars'':\n');
tmp = [tmp sprintf('- calculating ''%s'' features\n', feature_function('group'))];
tmp = [tmp sprintf('- mode ''pars'' returned a cell array; it must return numeric values\n')];
% delete parameter file, which may also contain this error
delete(parfile);
error(tmp);
elseif ~isnumeric(values)
tmp = sprintf('Error within ''feature_function'' input argument of ''calculate_NRpars'':\n');
tmp = [tmp sprintf('- calculating ''%s'' features\n', feature_function('group'))];
tmp = [tmp sprintf('- mode ''pars'' must return numeric values\n')];
% delete parameter file, which may also contain this error
delete(parfile);
error(tmp);
elseif length(values) ~= length(feature_function('parameter_names'))
tmp = sprintf('Error within ''feature_function'' input argument of ''calculate_NRpars'':\n');
tmp = [tmp sprintf('- calculating ''%s'' features\n', feature_function('group'))];
tmp = [tmp sprintf('- mode ''pars'' returned %d values, but mode ''pixels'' returns %d parameter names\n', ...
length(values), length(feature_function('parameter_names')))];
tmp = [tmp sprintf('- Note: make sure your parameters are stored in a vector and not a cell array\n')];
% delete parameter file, which may also contain this error
delete(parfile);
error(tmp);
elseif numel(values) ~= length(feature_function('parameter_names'))
tmp = sprintf('Error within ''feature_function'' input argument of ''calculate_NRpars'':\n');
tmp = [tmp sprintf('- calculating ''%s'' features\n', feature_function('group'))];
tmp = [tmp sprintf('- mode ''pars'' must return a vector of numbers: one value for each parameter\n')];
% delete parameter file, which may also contain this error
delete(parfile);
error(tmp);
end
NRpars.data(:,clip_num) = values;
NRpars.computed(clip_num) = true;
NRpars.version = 2;
% Save NR parameters
save (parfile, 'NRpars');
fprintf('\b-\n');
end
else
% move NRpars data into standalone variables, to enable parfor loop
data = shiftdim(NRpars.data,1);
computed = NRpars.computed;
% disable parallel tslice mode if dataset is all images & 1 fps clips
if isnan([nr_dataset.media(:).fps])
parallel_tslices = false;
elseif max([nr_dataset.media(:).fps]) <= 1
parallel_tslices = false;
end
% Process in batches of 100, saving parameter results as we go
for curr_start = 1:100:length(nr_dataset.media)
curr_stop = min(curr_start + 99, length(nr_dataset.media));
% Parallel loop to compute the features / parameters for all media
parfor cnt = curr_start:curr_stop
try
if ~computed(cnt)
% calculate parameter for this clip
data(cnt,:) = ...
calculate_one_media(nr_dataset, cnt, base_dir, ...
parallel_tslices, feature_function);
end
catch
% delete parameter file, which may be the source of this error
delete(parfile);
error('fatal error: run without parallel processing for more information');
end
fprintf('\b-\n');
end
% Move NRpars data back into NRpars structure
% Note: there are only two dimensions to "data" so the shiftdim
% call shifts the dimensions to the right by one, wrapping.
NRpars.data = shiftdim(data, 1);
NRpars.computed(:) = true;
NRpars.version = 2;
% Save NR parameters
save (parfile, 'NRpars');
end
end
fprintf('\n');
end
% Initialize structure for parameters, NRpars
function [NRpars] = new_NRpars(nr_dataset, parfile, feature_function)
NRpars.par_name = feature_function('parameter_names');
NRpars.media_name = cell(1,length(nr_dataset.media));
NRpars.data = nan(length(NRpars.par_name), length(nr_dataset.media));
NRpars.computed = false(1,length(nr_dataset.media));
NRpars.dataset_name = nr_dataset.dataset_name;
for cnt=1:length(nr_dataset.media)
NRpars.media_name{cnt} = nr_dataset.media(cnt).name;
end
% Save NR parameter structure
save (parfile, 'NRpars');
end