-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import cv2 | ||
import numpy as np | ||
import torch | ||
import torch.utils.data | ||
|
||
|
||
class Dataset(torch.utils.data.dataset.Dataset): | ||
def __init__(self, register): | ||
self.register = register.dropna() | ||
|
||
def __getitem__(self, index): | ||
paths_series = self.register.iloc[index] | ||
images = [load_image(path, index) | ||
for index, path in paths_series.iteritems()] | ||
return images | ||
|
||
def __len__(self): | ||
return len(self.register) | ||
|
||
|
||
def load_image(path, index, resize=None): | ||
img = cv2.imread(path, -1) | ||
if resize: | ||
img = cv2.resize(img, resize, interpolation=cv2.INTER_AREA) | ||
|
||
if index[2] == 'ColorImage': | ||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
img = np.transpose(img, (2, 0, 1)) # pytorch format | ||
img = img.astype(np.float32) / 255 | ||
|
||
elif index[1] == 'seg' and index[2] == 'Label': | ||
img = np.stack([img == index for index in range(36)], axis=0) | ||
img = img.astype(np.float32) | ||
|
||
elif index[2] == 'Depth': | ||
img = img.astype(np.float32) / 65535.0 # normalise | ||
img = np.expand_dims(img, axis=0) # add channel dim | ||
else: | ||
raise NotImplementedError( | ||
f'loading not implemented for image of type {index}' | ||
) | ||
return img | ||
|
||
|
||
if __name__ == '__main__': | ||
import apolloscope | ||
from apolloscope.ls_sp.register import Register, SequenceId, TypeId | ||
from matplotlib import pyplot as plt | ||
from pathlib import Path | ||
|
||
sp_path = (Path.home() / 'Data' / 'apolloscape' / | ||
'Scene_Parsing' / 'extracted') | ||
# ls_path = (Path.home() / 'Data' / 'apolloscape' / | ||
# 'Lane_Segmentation' / 'extracted') | ||
|
||
apolloscope.root_folder.scene_parsing(sp_path.resolve(strict=True)) | ||
# apolloscope.root_folder.lane_segmentation(ls_path.resolve(strict=True)) | ||
|
||
_INDEX = Register() | ||
|
||
_IMAGE_TYPE = TypeId("SP", "seg", "ColorImage", "jpg") | ||
_DEPTH_TYPE = TypeId("SP", "seg_depth", "Depth", "png") | ||
|
||
_TEST_SEQUENCE = SequenceId(2, 22, 6) | ||
|
||
_REGISTER = _INDEX.sequences([_TEST_SEQUENCE]) | ||
_REGISTER = _REGISTER.types([_IMAGE_TYPE, _DEPTH_TYPE]) | ||
|
||
_DATASET = Dataset(_REGISTER) | ||
|
||
for (im, dep) in _DATASET: | ||
plt.imshow(im.transpose((1, 2, 0))) | ||
plt.show() | ||
|
||
plt.imshow(dep.transpose((1, 2, 0)).squeeze()) | ||
plt.show() |