-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain3D.py
297 lines (250 loc) · 12.8 KB
/
train3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
from torch.nn.functional import threshold
fold_num = 0
gpu_bias = 2
os.environ['CUDA_VISIBLE_DEVICES'] = f'2, 5, 6'
# os.environ['CUDA_VISIBLE_DEVICES'] = f'{fold_num*2+gpu_bias}, {fold_num*2+1+gpu_bias}'
import time
import json
import argparse
from numpy import Inf
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from dataset.CT_pancreas_ids import IdPosPanCTDataset, EvaPanCTDataset
from model.trans_3DUnet import get_model_dict
from loss.criterions import get_criterions
# from utils.utils import train_on_epoch, eval_on_epoch, save_model
# from utils.utils_3D_2 import train_on_epoch, eval_on_epoch, save_model
from utils.utils_3D_embed_full import train_on_epoch, eval_on_epoch, save_model, get_weight
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
def get_parse():
parser = argparse.ArgumentParser()
parser.add_argument('--dir_data', type=str,
default='../../data/CT_Pancreas/Sloan_data',
help='direction for the dataset')
parser.add_argument('--is_transform', type=bool,
default=True, help='apply transform or not')
parser.add_argument('--split_ratio', type=float,
default=0.9, help='split ratio for training')
parser.add_argument('--is_pretrained', type=bool,
default=True, help='pretained or not')
parser.add_argument('--pretrained_dir', type=str,
default='./out/log/20220125-12_2', help='pretrained dir')
parser.add_argument('--model_name', type=str,
default='MaskTransUnet', help='model name for training')
parser.add_argument('--batch_size', type=int,
default=3, help='patient batch size')
parser.add_argument('--depth_size', type=int,
default=32, help='patient depth size')
parser.add_argument('--num_samples', type=int,
default=6, help='num samples')
# num layers [32, 32, 64, 64, 128]
# previous [16, 32, 64, 128, 256]
# [32, 64, 64, 128, 256]
parser.add_argument('--num_layers', type=list,
default=[16, 32, 64, 128, 256], help='number of layer for each layer')
# 320-160-80-40-20: 160-80-40-20-10
# 256-128-64-32-16: 80-40-20-10-5
parser.add_argument('--roi_size_list', type=list,
default=[100, 65, 40, 25, 10], help='size of roi for each layer')
parser.add_argument('--is_roi_list', type=list,
default=[False, True, True, True, True], help='using roi for each layer')
'''
parser.add_argument('--num_layers', type=list,
default=[16, 32, 32, 64], help='number of layer for each layer')
'''
parser.add_argument('--dim_input', type=int,
default=1, help='input dimension or modality')
parser.add_argument('--dim_output', type=int,
default=2, help='output dimension or classes')
parser.add_argument('--kernel_size', type=int,
default=3, help='kernel_size for convolution')
parser.add_argument('--device', type=str,
default='cuda', help='device for training')
parser.add_argument('--epochs', type=int,
default=800, help='epochs for training')
parser.add_argument('--eval_epoch', type=int,
default=5, help='the interval epoch for eval')
parser.add_argument('--log_dir', type=str,
default='./runs/log', help='device for training')
parser.add_argument('--model_dir', type=str,
default='./out/log', help='device for training')
parser.add_argument('--criterion_list', type=list,
default=['CrossEntroLoss', 'DiceClassLoss'],
help='device for training')
parser.add_argument('--criterion_weight', type=list,
default=[1, 1],
help='device for training')
parser.add_argument('--weight_list', type=list,
default=[0.05, 0.05, 0.1, 0.1, 1.0],
help='weight list for training')
parser.add_argument('--final_weight', type=list,
default=[2., 1.5, 1.0, 1., 1.0],
help='weight list for training')
parser.add_argument('--initial_weight', type=list,
default=[0.1, 0.2, 0.3, 0.4, 1.0],
help='device for training')
args = parser.parse_args()
return args
def get_model(args, fold_num, device):
model_fn = get_model_dict(args.model_name)
model = model_fn(num_layers=args.num_layers,
roi_size_list=args.roi_size_list,
is_roi_list=args.is_roi_list,
dim_input=args.dim_input,
dim_output=args.dim_output,
kernel_size=args.kernel_size)
if args.is_pretrained:
pretrained_dir = os.path.join(args.pretrained_dir, f'fold_{fold_num}', 'temp_model.pt')
# state_dict = torch.load(pretrained_dir).state_dict()
# model.load_state_dict(state_dict)
model.load_state_dict(torch.load(pretrained_dir))
model = nn.DataParallel(model.to(device))
return model
def get_dynamic_weight(args, T, warmup_step):
weight_list = args.weight_list
initial_weight = args.initial_weight
final_weight = args.final_weight
out_list = []
for i in range(len(weight_list)):
y = [get_weight(j-warmup_step, T=T,
default_weight=weight_list[i],
initial_weight=initial_weight[i],
final_weight=final_weight[i])
for j in range(args.epochs)]
out_list.append(y)
out_list = list(zip(*out_list))
return out_list
def get_criterion_list(args):
criterions = []
criterion_name = args.criterion_list
temp_list = ['CrossEntroLoss', 'BalanceDiceLoss']
temp_list2 = ['CrossEntroLoss', 'DiceClassLoss']
eval_list = ['BalanceDiceLoss', 'DiceClassLoss', 'RecallLoss', 'PrecisionLoss','LocalizationLoss']
for i in range(len(args.num_layers)):
if i < (len(args.num_layers)-2):
criterions.append(get_criterions(temp_list))
elif i == (len(args.num_layers)-2):
criterions.append(get_criterions(temp_list2))
else:
criterions.append(get_criterions(criterion_name))
eval_criterions = get_criterions(eval_list)
return criterions, eval_criterions
def main(args):
# torch.autograd.set_detect_anomaly(True)
num_device = torch.cuda.device_count()
root = args.dir_data
is_transform = args.is_transform
depth_size = args.depth_size
num_samples = args.num_samples
batch_size = args.batch_size * num_device
step_times = num_samples // 3
with open('split_dataset_8.json', 'r') as f:
dataset_ids = json.load(f)
train_ids = dataset_ids[f'train_id fold_{fold_num}']
test_ids = dataset_ids[f'test_id fold_{fold_num}']
train_pandataset = IdPosPanCTDataset(root=root,
depth_size=depth_size,
num_samples=num_samples,
is_transform=is_transform,
ids=train_ids)
test_pandataset = EvaPanCTDataset(root=root,
depth_size=depth_size,
ids=test_ids)
train_panDl = DataLoader(dataset=train_pandataset, batch_size=batch_size,
num_workers=12, shuffle=True, pin_memory=True)
test_panDl = DataLoader(dataset=test_pandataset, batch_size=1,
shuffle=False, pin_memory=True)
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
model = get_model(args, fold_num, device=device)
warmup_step = 10
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
# optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
sheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
mode='min',
factor=0.8,
patience=5,
threshold=1e-2,
cooldown=1,
min_lr=1e-7)
'''
sheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=250,
gamma=0.5)
sheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=100,
eta_min=1e-6)
'''
epochs = args.epochs
patient_batchsize = batch_size
patient_epochs = num_samples
criterions, eval_criterions = get_criterion_list(args)
# print(criterions)
criterion_weight = args.criterion_weight
# writer = SummaryWriter(os.path.join(args.log_dir, time.strftime("%Y%m%d-%H%M")))
writer = SummaryWriter(os.path.join(args.log_dir, time.strftime("%Y%m%d-%H_2"), f'fold_{fold_num}'))
# writer = SummaryWriter(os.path.join(args.log_dir, '20211109-1112'))
# model_dir = os.path.join(args.model_dir, time.strftime("%Y%m%d-%H%M"))
model_dir = os.path.join(args.model_dir, time.strftime("%Y%m%d-%H_2"), f'fold_{fold_num}')
if not os.path.exists(model_dir):
os.makedirs(model_dir)
global_step = 0
smooth_ratio = 0
best_eval_loss = Inf
eval_loss = 50
best_train_loss = Inf
train_loss = Inf
smooth_eval_loss = Inf
smooth_train_loss = Inf
T = 12
dynamic_weight_list = get_dynamic_weight(args, T, warmup_step)
for i in tqdm(range(epochs)):
dynamic_weight = dynamic_weight_list[i]
# dynamic_weight = args.weight_list
if i % args.eval_epoch == 0:
eval_loss, global_step = eval_on_epoch(model=model,
dataloader=test_panDl,
criterions=eval_criterions,
device=device,
writer=writer,
patient_epochs=patient_epochs,
patient_batchsize=patient_batchsize,
global_step=global_step)
sheduler.step(eval_loss)
if i != 0:
smooth_eval_loss = eval_loss
smooth_train_loss = train_loss
else:
smooth_eval_loss = (1-smooth_ratio)*eval_loss + \
smooth_ratio*smooth_eval_loss
smooth_train_loss = (1-smooth_ratio)*train_loss + \
smooth_ratio*smooth_train_loss
if smooth_eval_loss <= best_eval_loss:
best_eval_loss = smooth_eval_loss
best_train_loss = smooth_train_loss
print('Best train_loss:', best_train_loss)
print('Best eval loss', eval_loss)
save_model(model.module.state_dict(),
os.path.join(model_dir, f'temp_model.pt'))
if i < warmup_step:
dynamic_weight = dynamic_weight_list[0]
train_loss, global_step = train_on_epoch(model=model,
dataloader=train_panDl,
optimizer=optimizer,
criterions=criterions,
step_times=step_times,
device=device,
writer=writer,
patient_epochs=patient_epochs,
patient_batchsize=patient_batchsize,
global_step=global_step,
dynamic_weight=dynamic_weight)
# sheduler.step()
print('Best train_loss:', best_train_loss)
print('Best eval loss', eval_loss)
writer.close()
save_model(model.module, os.path.join(model_dir, 'model.pt'))
if __name__ == '__main__':
args = get_parse()
main(args)