-
Notifications
You must be signed in to change notification settings - Fork 3
/
engine.py
239 lines (197 loc) · 12.2 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from langchain.agents import AgentType
from langchain.agents import Tool
from langchain.agents import initialize_agent
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.vectorstores.faiss import FAISS
from langchain_core.embeddings import Embeddings
from morpheus_llm.llm import LLMContext
from morpheus_llm.llm import LLMEngine
from morpheus_llm.llm.nodes.extracter_node import ManualExtracterNode
from morpheus_llm.llm.services.llm_service import LLMService
from morpheus_llm.llm.services.utils.langchain_llm_client_wrapper import LangchainLLMClientWrapper
from morpheus_llm.llm.task_handlers.simple_task_handler import SimpleTaskHandler
from ..data_models.config import RunConfig
from ..data_models.info import AgentMorpheusInfo
from ..nodes.cve_checklist_node import CVEChecklistNode
from ..nodes.cve_justification_node import CVEJustifyNode
from ..nodes.cve_langchain_agent_node import CVELangChainAgentNode
from ..nodes.cve_summary_node import CVESummaryNode
from ..utils.code_searcher import LangchainCodeSearcher
from ..utils.document_embedding import DocumentEmbedding
from ..utils.prompting import agent_examples_for_prompt
from ..utils.serp_api_wrapper import MorpheusSerpAPIWrapper
logger = logging.getLogger(__name__)
def _build_dynamic_agent_fn(run_config: RunConfig, embeddings: Embeddings):
chat_service = LLMService.create(run_config.engine.agent.model.service.type,
**run_config.engine.agent.model.service.model_dump(exclude={"type"},
by_alias=True))
chat_client = chat_service.get_client(**run_config.engine.agent.model.model_dump(exclude={"service", "type"},
by_alias=True))
langchain_llm = LangchainLLMClientWrapper(client=chat_client)
# Initialize a SerpAPIWrapper object to perform internet searches.
search = MorpheusSerpAPIWrapper(max_retries=run_config.general.max_retries)
# Append new Tools to the tools list, which allows for internet searches and software version comparisons.
# The first tool can be especially useful for answering questions about external libraries while the second
# allows for more consistent and accurate comparisons of software versions.
def inner_create_agent_fn(context: LLMContext):
tools: list[Tool] = [
Tool(
name="Internet Search",
func=search.run, # Synchronous function for running searches.
coroutine=search.arun, # Asynchronous coroutine for running searches.
description="useful for when you need to answer questions about external libraries",
),
]
vdb_map: AgentMorpheusInfo.VdbPaths = context.message().get_metadata("info.vdb") # type: ignore
def run_retrieval_qa_tool(retrieval_qa_tool: RetrievalQA, query: str) -> str | dict:
"""
Runs a given retrieval QA tool on the provided query. Returns a dict of the result string and source
documents if the `return_source_documents` config is true, otherwise it returns just the result string if
`return_source_documents` is false.
"""
output_dict = retrieval_qa_tool(query)
# If returning source documents, include the result and source_documents keys in the output
if run_config.engine.agent.return_source_documents:
return {k: v for k, v in output_dict.items() if k in ["result", "source_documents"]}
# If not returning source documents, return only the result as a string
else:
return output_dict["result"]
if (vdb_map.code_vdb_path is not None):
# load code vector DB
code_vector_db = FAISS.load_local(vdb_map.code_vdb_path, embeddings, allow_dangerous_deserialization=True)
code_qa_tool = RetrievalQA.from_chain_type(
llm=langchain_llm,
chain_type="stuff",
retriever=code_vector_db.as_retriever(),
return_source_documents=run_config.engine.agent.return_source_documents)
tools.append(
Tool(name="Docker Container Code QA System",
func=lambda query: run_retrieval_qa_tool(code_qa_tool, query),
description=("useful for when you need to check if an application or any dependency within "
"the Docker container uses a function or a component of a library.")))
elif run_config.general.code_search_tool:
logger.info("Preparing source code documents for the code search tool.")
# Use existing document loader and chunker from DocumentEmbedding class, without embedding.
embedder = DocumentEmbedding(embedding=None,
vdb_directory=run_config.general.base_vdb_dir,
git_directory=run_config.general.base_git_dir)
documents = []
sources = context.message().get_metadata("input").image.source_info
for source_info in sources:
if source_info.type == 'code':
documents.extend(embedder.collect_documents(source_info))
if len(documents) > 0:
documents_index = embedder._chunk_documents(documents)
lexical_code_searcher = LangchainCodeSearcher(documents_index, rank_documents=True, k=5)
tools.append(
Tool(name="Docker Container Code Search",
func=lexical_code_searcher.search,
description=("useful for when you need to search the Docker container's code for a given "
"function or component of a library. This requires exact function name or library"
"without no additional information")))
else:
logger.warning("No code documents found for the code search tool.")
if (vdb_map.doc_vdb_path is not None):
guide_vector_db = FAISS.load_local(vdb_map.doc_vdb_path, embeddings, allow_dangerous_deserialization=True)
guide_qa_tool = RetrievalQA.from_chain_type(
llm=langchain_llm,
chain_type="stuff",
retriever=guide_vector_db.as_retriever(),
return_source_documents=run_config.engine.agent.return_source_documents)
tools.append(
Tool(name="Docker Container Developer Guide QA System",
func=lambda query: run_retrieval_qa_tool(guide_qa_tool, query),
description=(
"Useful for when you need to ask questions about the purpose and functionality of the Docker "
"container.")))
# Define a system prompt that sets the context for the language model's task. This prompt positions the assistant
# as a powerful entity capable of investigating CVE impacts on Docker containers.
sys_prompt = (
"You are a very powerful assistant who helps investigate the impact of reported Common Vulnerabilities and "
"Exposures (CVE) on Docker containers. Information about the Docker container under investigation is stored in "
"vector databases available to you via tools.")
# Initialize an agent with the tools and settings defined above.
# This agent is designed to handle zero-shot reaction descriptions and parse errors.
agent = initialize_agent(
tools,
langchain_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=run_config.engine.agent.verbose,
handle_parsing_errors="Check your output and make sure it conforms, use the Action/Action Input syntax",
max_iterations=10,
early_stopping_method="generate",
return_intermediate_steps=run_config.engine.agent.return_intermediate_steps)
# Modify the language model chain's prompt template to adjust how the model should process inputs and structure
# responses.
prompt_template = agent.agent.llm_chain.prompt.template.replace(
"Answer the following questions as best you can.",
("If the input is not a question, formulate it into a question first. Include intermediate thought in the "
"final answer."),
1).replace(
"Use the following format:",
"Use the following format (start each response with one of the following prefixes: "
"[Question, Thought, Action, Action Input, Final Answer]):",
1)
if run_config.engine.agent.prompt_examples:
prompt_template = prompt_template.replace("Begin!\n\n", agent_examples_for_prompt + "Begin!\n\n")
agent.agent.llm_chain.prompt.template = f'{sys_prompt} {prompt_template}'
return agent
return inner_create_agent_fn
def build_engine(*, run_config: RunConfig, embeddings: Embeddings):
summary_service = LLMService.create(run_config.engine.summary_model.service.type,
**run_config.engine.summary_model.service.model_dump(exclude={"type"}))
justification_service = LLMService.create(
run_config.engine.justification_model.service.type,
**run_config.engine.justification_model.service.model_dump(exclude={"type"}))
engine = LLMEngine()
checklist_node = CVEChecklistNode(checklist_model_config=run_config.engine.checklist_model,
enable_llm_list_parsing=run_config.general.enable_llm_list_parsing)
engine.add_node("extract_prompt", node=ManualExtracterNode(input_names=checklist_node.get_input_names()))
engine.add_node("checklist", inputs=[("/extract_prompt/*", "*")], node=checklist_node)
engine.add_node("agent",
inputs=[("/checklist", "input")],
node=CVELangChainAgentNode(
create_agent_executor_fn=_build_dynamic_agent_fn(run_config, embeddings),
replace_exceptions=True,
replace_exceptions_value="I do not have a definitive answer for this checklist item."))
engine.add_node('summary',
inputs=[("/checklist", "checklist_inputs"), ("/agent/outputs", "checklist_outputs"),
"/agent/intermediate_steps"],
node=CVESummaryNode(llm_client=summary_service.get_client(
**run_config.engine.summary_model.model_dump(exclude={"service", "type"}))))
engine.add_node('justification',
inputs=[("/summary/summary", "summaries")],
node=CVEJustifyNode(llm_client=justification_service.get_client(
**run_config.engine.justification_model.model_dump(exclude={"service", "type"}))))
handler_inputs = [
"/summary/checklist",
"/summary/summary",
f"/justification/{CVEJustifyNode.JUSTIFICATION_LABEL_COL_NAME}",
f"/justification/{CVEJustifyNode.JUSTIFICATION_REASON_COL_NAME}",
f"/justification/{CVEJustifyNode.AFFECTED_STATUS_COL_NAME}",
]
handler_outputs = [
"checklist",
"summary",
CVEJustifyNode.JUSTIFICATION_LABEL_COL_NAME,
CVEJustifyNode.JUSTIFICATION_REASON_COL_NAME,
CVEJustifyNode.AFFECTED_STATUS_COL_NAME
]
# Add our task handler
engine.add_task_handler(inputs=handler_inputs, handler=SimpleTaskHandler(output_columns=handler_outputs))
return engine