Skip to content

Latest commit

 

History

History

syevjBatched

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

cuSOLVER Batched Standard Symmetric Dense Eigenvalue solver (via Jacobi method) example

Description

This code demonstrates a usage of cuSOLVER syevjBatched function for using syevjBatched to compute spectrum of a pair of dense symmetric matrices by

Ajx = λx

where A0 and A1 is a 3x3 dense symmetric matrices

A0 = |  1.0 | -1.0 | 0.0 |
     | -1.0 |  2.0 | 0.0 |
     |  0.0 |  0.0 | 0.0 |

A1 = | 3.0 | 4.0 | 0.0 |
     | 4.0 | 7.0 | 0.0 |
     | 0.0 | 0.0 | 0.0 |

The following code uses syevjBatched to compute eigenvalues and eigenvectors

Ajx = Vj * Wj * VTj

The user can disable/enable sorting by the function cusolverDnXsyevjSetSortEig.

Supported SM Architectures

All GPUs supported by CUDA Toolkit (https://developer.nvidia.com/cuda-gpus)

Supported OSes

Linux
Windows

Supported CPU Architecture

x86_64
ppc64le
arm64-sbsa

CUDA APIs involved

Building (make)

Prerequisites

  • A Linux/Windows system with recent NVIDIA drivers.
  • CMake version 3.18 minimum
  • Minimum CUDA 9.0 toolkit is required.

Build command on Linux

$ mkdir build
$ cd build
$ cmake ..
$ make

Make sure that CMake finds expected CUDA Toolkit. If that is not the case you can add argument -DCMAKE_CUDA_COMPILER=/path/to/cuda/bin/nvcc to cmake command.

Build command on Windows

$ mkdir build
$ cd build
$ cmake -DCMAKE_GENERATOR_PLATFORM=x64 ..
$ Open cusolver_examples.sln project in Visual Studio and build

Usage

$  ./cusolver_syevjBatched_example

Sample example output:

A0 = (matlab base-1)
1.00 -1.00 0.00
-1.00 2.00 0.00
0.00 0.00 0.00
=====
A1 = (matlab base-1)
3.00 4.00 0.00
4.00 7.00 0.00
0.00 0.00 0.00
=====
matrix 0: syevj converges
matrix 1: syevj converges
====
W0[0] = 0.381966
W0[1] = 2.618034
W0[2] = 0.000000
====
W1[0] = 0.527864
W1[1] = 9.472136
W1[2] = 0.000000
====
V0 = (matlab base-1)
0.85 -0.53 0.00
0.53 0.85 0.00
0.00 0.00 1.00
V1 = (matlab base-1)
0.85 0.53 0.00
-0.53 0.85 0.00
0.00 0.00 1.00